| 
              
              
              Open Access  
 
              
              
              
              Research 
              
              
(Published 
				online: 08-02-2017)  
              5. 
				
              
              Evaluation of tissue-engineered bone 
              constructs using rabbit fetal osteoblasts on acellular bovine 
              cancellous bone matrix - 
              
              Rashmi, Rekha Pathak, Amarpal, H. P. Aithal, P. Kinjavdekar, A. M. 
              Pawde, A. K. Tiwari, P. Sangeetha, P. Tamilmahan, and A. B. 
              Manzoor 
              
              Veterinary World, 10(2): 163-169   
              
   
                
                
doi: 
              
				
				10.14202/vetworld.2017.163-169 
                
                
                Rashmi: 
                
                Division of Veterinary Surgery, Indian Veterinary Research 
                Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India. 
              
              Rekha Pathak: 
              
              Division of Veterinary Surgery, Indian Veterinary Research 
              Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India. 
              
              Amarpal: 
              
              Division of Veterinary Surgery, Indian Veterinary Research 
              Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India. 
              
              H. P. Aithal: 
              
              Division of Veterinary Surgery, Indian Veterinary Research 
              Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India. 
              
              P. Kinjavdekar: 
              
              Division of Veterinary Surgery, Indian Veterinary Research 
              Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India. 
              
              A. M. Pawde: 
              
              Division of Veterinary Surgery, Indian Veterinary Research 
              Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India. 
              
              A. K. Tiwari: 
              
              Division of Standardization, Indian Veterinary Research Institute, 
              Izatnagar, Bareilly - 243 122, Uttar Pradesh, India. 
              
              P. Sangeetha: 
              
              Division of Veterinary Surgery, Indian Veterinary Research 
              Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India. 
              
              P. Tamilmahan: 
              
              Division of Veterinary Surgery, Indian Veterinary Research 
              Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India. 
              
              A. B. Manzoor: 
              
              Division of Veterinary Surgery, Indian Veterinary Research 
              Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.   
              
              Received: 10-11-2016, Accepted: 04-01-2017, Published online: 
              08-02-2017   
				
              	
              	Corresponding author: 
              	
				
                Rekha Pathak, e-mail: rekhasurgery@rediffmail.com 
 
              Citation: 
              
              Rashmi, Pathak R, Amarpal, Aithal HP, Kinjavdekar P, Pawde AM, 
              Tiwari AK, Sangeetha P, Tamilmahan P, Manzoor AB (2017) Evaluation 
              of tissue-engineered bone constructs using rabbit fetal 
              osteoblasts on acellular bovine cancellous bone matrix, 
              
              Veterinary World, 10(2): 163-169. 
 
              
				Abstract 
 
              
              
              Aim: 
              
              The aim of this study was to generate composite bone graft and 
              investigate the rabbit fetal osteoblasts adhesion, proliferation 
              and penetration on acellular matrices of cancellous bone. 
              
              
              Materials and Methods: 
              
              Acellular cancellous bone was prepared and developed as in the 
              previous study with little modification. These matrices were 
              decellularized by rapid freeze and thaw cycle. To remove the cell 
              debris, they were then treated with hydrogen peroxide (3%) and 
              ethanol to remove antigenic cellular and nuclear materials from 
              the scaffold. Primary osteoblast cells were harvested from 20 to 
              22 days old rabbit fetal long and calvarial bone. These cells were 
              cultured and characterized using a specific marker. The third 
              passaged fetal osteoblast cells were then seeded on the scaffold 
              and incubated for 14 days. The growth pattern of the cells was 
              observed. Scanning electron microscope and hematoxylin and eosin 
              staining were used to investigate cells proliferation. 
              
              
              Results: 
              
              The cells were found to be growing well on the surface of the 
              scaffold and were also present in good numbers with the matrix 
              filopodial extensions upto inside of the core of the tissue. 
              
              
              Conclusion: 
              
              Thus, a viable composite scaffold of bone could be developed which 
              has a great potential in the field of bone tissue engineering. 
              
              Keywords: 
              
              composite grafts, osteoblasts, tissue engineering. 
 
              References 
 
                
                  | 1. Pilia, 
                  M., Guda, T. and Appleford, M. (2013) Development of composite 
                  scaffolds for load-bearing segmental bone defects. Biomed. 
                  Res. Int., 2013: 458253. https://doi.org/10.1155/2013/458253
 PMid:23984363 PMCid:PMC3745947
 |  
                  |  |  
                  | 2. Trentz, 
                  O.A., Hoerstrup, S.P., Sun, L.K., Bestmann, L., Platz, A. and 
                  Trentz, O.L. (2003) Osteoblasts response to allogenic and 
                  xenogenic solvent dehydrated cancellous bone in vitro. 
                  Biomaterials, 24: 3417-3426. https://doi.org/10.1016/S0142-9612(03)00205-9
 |  
                  |  |  
                  | 3. Lucarelli, 
                  E., Fini, M., Beccheroni, A., Giavaresi, G., DiBella, C., 
                  Aldini, N.N., Guzzardella, G., Martini, L., Cenacchi, A., 
                  DiMaggio, N., Sangiorgi, L., Fornasari, P. M., Mecuri, M., 
                  Giardino, R. and Donati, D. (2005) Stromal stem cells and 
                  platelet-rich plasma improve bone allograft integration. Clin. 
                  Orthop. Relat. Res., 435: 62-68. https://doi.org/10.1097/01.blo.0000165736.87628.12
 PMid:15930922
 |  
                  |  |  
                  | 4. 
                  Bauermeister, A. (1961) Treatment of cysts, tumors and 
                  inflammatory processes of the bone with the ''Kiel graft''. 
                  Bruns Beitr. Klin. Chir., 203: 287-316. PMid:13865890
 |  
                  |  |  
                  | 5. Hammer, 
                  C., Linke, R., Wagner, F. and Diefenbeck, M. (1998) Organs 
                  from animals or man. Int. Arch. Allergy Immunol., 116: 5-21. https://doi.org/10.1159/000023919
 PMid:9623504
 |  
                  |  |  
                  | 6. Feng, W., 
                  Fu, L., Liu, J. and Li, D. (2012) The expression and 
                  distribution of xenogeneic targeted antigens on porcine bone 
                  tissue. Transplant. Proc., 44: 1419-1422. https://doi.org/10.1016/j.transproceed.2011.11.070
 PMid:22664027
 |  
                  |  |  
                  | 7. Badylak, 
                  S.F. and Gilbert, T.W. (2008) Immune response to biologic 
                  scaffold materials. Semin. Immunol., 20: 109-116. https://doi.org/10.1016/j.smim.2007.11.003
 PMid:18083531 PMCid:PMC2605275
 |  
                  |  |  
                  | 8. Jahn, K., 
                  Braunstein, V., Furlong, P.I., Simpson, A.E., Richards, R.G. 
                  and Stoddart, M.J. (2010) A rapid method for the generation of 
                  uniform acellular bone explants: A technical note. J. Orthop. 
                  Surg. Res., 5: 32. https://doi.org/10.1186/1749-799X-5-32
 PMid:20459728 PMCid:PMC2873550
 |  
                  |  |  
                  | 9. Pathak, 
                  R., Amarpal, A., Tiwari, A.K., Kurade, N.P. and Amarnath, 
                  (2012) Decellularization of buffalo bone to prepare bone 
                  scaffolds for effective bone tissue engineering. J. Cell 
                  Tissue Res., 12(3): 3291-3295. |  
                  |  |  
                  | 10. 
                  Tamilmahan, P. (2013) Development of Acellular Osseous 
                  Xenograft for Bone Tissue Engineering in Rabbits. M.V. Sc. 
                  Thesis Submitted to Indian Veterinary Research Institute, 
                  Izatnagar. |  
                  |  |  
                  | 11. Yang, 
                  Y., Zhao, Y., Tang, G., Li, H., Yuan, X. and Fan, Y. (2008) In 
                  vitro degradation of porous poly (L-lactide-co-glycolide)/β-tricalcium 
                  phosphate (PLGA/β-TCP) scaffolds under dynamic and static 
                  conditions. Polym. Degrad. Stab., 93: 1838-1845. https://doi.org/10.1016/j.polymdegradstab.2008.07.007
 |  
                  |  |  
                  | 12. Schieker, 
                  M., Seitz, H., Drosse, I., Seitz, S. and Mutschler, W. (2006) 
                  Biomaterials as scaffold for bone tissue engineering. Eur. J. 
                  Trauma, 32: 114-124. https://doi.org/10.1007/s00068-006-6047-8
 |  
                  |  |  
                  | 13. 
                  Breitbart, A.S., Grande, D.A., Kessler, R., Ryaby, J.T., 
                  Fitzsimmons, R.J. and Grant, R.T. (1998) Tissue engineered 
                  bone repair of calvarial defects using cultured periosteal 
                  cells. Plast. Reconstr. Surg., 101: 567-574. https://doi.org/10.1097/00006534-199803000-00001
 PMid:9500373
 |  
                  |  |  
                  | 14. Ohgushi, 
                  H., Miyake, J. and Tateishi, T. (2003) Mesenchymal stem cells 
                  and bioceramics: Strategies to regenerate the skeleton. 
                  Novartis Found. Symp., 249: 118-127. https://doi.org/10.1002/0470867973.ch9
 PMid:12708653
 |  
                  |  |  
                  | 15. Kneser, 
                  U., Stangenberg, L., Ohnolz, J., Buettner, O., Stern-Straeter, 
                  J., Möbest, D., Horch, R.E., Stark, G.B. and Schaefer, D.J. 
                  (2006) Evaluation of processed bovine cancellous bone matrix 
                  seeded with syngenic osteoblasts in a critical size calvarial 
                  defect rat model. J. Cell Mol. Med., 10(3): 695-707. https://doi.org/10.1111/j.1582-4934.2006.tb00429.x
 PMCid:PMC3933151
 |  
                  |  |  
                  | 16. Katzburg, 
                  S., Lieberherr, M., Ornoy, A., Klein, B.Y., Hendel, D. and 
                  Somjen, D. (1999) Isolation and hormonal responsiveness of 
                  primary cultures of human bone-derived cells: Gender and age 
                  differences. Bone, 25: 667-673. https://doi.org/10.1016/S8756-3282(99)00225-2
 |  
                  |  |  
                  | 17. Tsigkou, 
                  O., Jones, J.R., Polak, J.M. and Stevens, M.M. (2009) 
                  Differentiation of fetal osteoblasts and formation of 
                  mineralized bone nodules by 45S5 bioglass conditioned medium 
                  in the absence of osteogenic supplements. Biomaterials, 30: 
                  3542-3550. https://doi.org/10.1016/j.biomaterials.2009.03.019
 PMid:19339047
 |  
                  |  |  
                  | 18. Zuliani, 
                  T., Saiagh, S., Knol, A.C., Esbelin, J. and Dreno, B. (2013) 
                  Fetal fibroblasts and keratinocytes with immunosuppressive 
                  properties for allogeneic cell-based wound therapy. PLoS One, 
                  8: 1-12. https://doi.org/10.1371/journal.pone.0070408
 PMid:23894651 PMCid:PMC3722184
 |  
                  |  |  
                  | 19. DePaula, 
                  C.A., Truncale, K.G., Gertzman, A.A., Sunwoo, M.H. and Dunn, 
                  M.G. (2005) Effects of hydrogen peroxide cleaning procedures 
                  on bone graft osteoinductivity and mechanical properties. Cell 
                  Tissue Bank, 6: 287-298. https://doi.org/10.1007/s10561-005-3148-2
 PMid:16308768
 |  
                  |  |  
                  | 20. Amarpal, 
                  A., Kinjavdekar, P., Aithal, H.P., Pawde, A.M. and Pratap, K. 
                  (2010) Evaluation of xylazine, acepromazine and medetomidine 
                  with ketamine for general anaesthesia in rabbits. Scand. J. 
                  Lab. Anim. Sci., 37(3): 223-229. |  
                  |  |  
                  | 21. Cao, X.Y., 
                  Yin, M.Z., Zhang, L.N., Li, S.P. and Cao, Y. (2006) 
                  Establishment of a new model for culturing rabbit osteoblasts 
                  in vitro. Biomed. Mater., 1: L16-L19. https://doi.org/10.1088/1748-6041/1/4/l02
 |  
                  |  |  
                  | 22. Liao, 
                  S.S., Cui, F.Z., Zhang, W. and Feng, Q.L. (2004) 
                  Hierarchically biomimetic bone scaffold materials: Nano-HA/collagen/PLA 
                  composite. J. Biomed. Mater. Res. B. Appl. Biomater., 69: 
                  158-65. https://doi.org/10.1002/jbm.b.20035
 PMid:15116405
 |  
                  |  |  
                  | 23. 
                  Wallington, E.A. (1972) Histological Methods for Bone. 
                  Butterworths, London. PMid:4629481 PMCid:PMC1412372
 |  
                  |  |  
                  | 24. Luna, 
                  L.G. (1968) Manual of Histologic Staining Methods of the Armed 
                  Forces Institute of Pathology. 3rd ed. McGraw-Hill Company, 
                  New York. |  
                  |  |  
                  | 25. 
                  Hasegawa, Y., Shimada, K., Suzuki, N., Takayama, T., Kato, T., 
                  Iizuka, T., Sato, S. and Ito, K. (2008) The in vitro 
                  osteogenetic characteristics of primary osteoblastic cells 
                  from a rabbit Calvarium. J. Oral Sci., 50: 427-434. https://doi.org/10.2334/josnusd.50.427
 PMid:19106470
 |  
                  |  |  
                  | 26. Rui, G., 
                  Jin, X. and Lin, S. (2012) Histocompatibility of acellular 
                  matrix bone with osteoblast and vascular endothelial cells. 
                  In: Haim, T., editor. Bone Regeneration. InTech open access 
                  publisher. P321-348.. https://doi.org/10.5772/36032
 |  
                  |  |  
                  | 27. Flautre, 
                  B., Descamps, M., Delecourt, C., Blary, M. and Hardouin, P. 
                  (2001) Porous HA ceramic for bone replacement: Role of the 
                  pores and interconnections-experimental study in the rabbit. 
                  J. Mater. Sci. Mater. Med., 12: 679-682. https://doi.org/10.1023/A:1011256107282
 PMid:15348237
 |  
                  |  |  
                  | 28. Grayson, 
                  W.L., Bhumiratana, S., Cannizzaro, C., Chao, G.P.H., Lennon, 
                  D.P., Caplan, A.I. and Vunjak-Novakovic, G. (2008) Effects of 
                  initial seeding density and fluid perfusion rate on formation 
                  of tissue-engineered bone. Tissue Eng., 14: 1809-1820. https://doi.org/10.1089/ten.tea.2007.0255
 PMid:18620487 PMCid:PMC2773295
 |  
                  |  |  
                  | 29. Meinel, 
                  L., Karageorgiou, V. and Fajardo, R. (2004) Bone tissue 
                  engineering using human mesenchymal stem cells: Effects of 
                  scaffold material and medium flow. Ann. Biomed. Eng., 32: 
                  112-122. https://doi.org/10.1023/b:abme.0000007796.48329.b4
 |  
                  |  |  
                  | 30. Chan, 
                  L.K., Leung, V.Y., Tama, V., Lu, W.W., Sze, K.Y. and Cheung, 
                  K.M. (2012) Decellularized bovine intervertebral disc as a 
                  natural scaffold for xenogenic cell studies. Acta Biomater., 
                  9: 5262-5272. https://doi.org/10.1016/j.actbio.2012.09.005
 PMid:23000521
 |  
                  |  |  
                  | 31. Chen, 
                  L., Sun, L., Tao, J.F., Jiang, J., Gao, X.S., Jie, Y.S. and 
                  Tian, W. (2010) Xenographic bone graft materials safely 
                  prepared by compound surfactant. J. Rehabil. Tissue Eng. Res. 
                  Clin., 14: 1499-1503. |  
                  |  |  
                  | 32. Sulaiman, 
                  S.B., Keong, T.K., Cheng, C.H., Saim, A.B. and Hj Idrus, R.B. 
                  (2013) Tricalcium phosphate/hydroxyapatite (TCP-HA) bone 
                  scaffold as potential candidate for the formation of tissue 
                  engineered bone. Indian J. Med. Res., 137: 1093-1110. PMid:23852290 PMCid:PMC3734714
 |  |