Open Access
Research (Published online: 04-03-2019)
3. Larvicidal, adulticidal, and oviposition-deterrent activity of Piper betle L. essential oil to Aedes aegypti
Riesna Martianasari and Penny Humaidah Hamid
Veterinary World, 12(3): 367-371

Riesna Martianasari: Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna No. 2 Karangmalang 55281, Yogyakarta, Indonesia.
Penny Humaidah Hamid: Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna No. 2 Karangmalang 55281, Yogyakarta, Indonesia.

doi: 10.14202/vetworld.2019.367-371

Share this article on [Facebook] [LinkedIn]

Article history: Received: 04-09-2018, Accepted: 24-01-2019, Published online: 04-03-2019

Corresponding author: Penny Humaidah Hamid


Citation: Martianasari R, Hamid PH (2019) Larvicidal, adulticidal, and oviposition-deterrent activity of Piper betle L. essential oil to Aedes aegypti, Veterinary World, 12(3): 367-371.

Background and Aim: Aedes aegypti is a primary vector of many arthropod-borne diseases. One of the diseases, dengue fever, is an endemic disease in Indonesia causing high mortalities for decades. There are no preventive and specific treatments for dengue so far. Therefore, prevention of this disease largely depends on the mosquito control. Since resistance to chemical insecticides occurred worldwide, the study on alternate and new mosquito insecticides are mandatory. This study aimed to demonstrate the effect of essential oil from P. betle L. in the larval and adult stages, as well as its influence on oviposition activity of A. aegypti mosquito.

Materials and Methods: P. betle efficacy was evaluated in various stages of A. aegypti development. For the larvicidal activity, larvae instar III stage was used. Adulticidal assay in this experiment was performed using newly emerged A. aegypti. For oviposition assay, mated A. aegypti was tested for their responses to P. betle-treated and non-treated ovitraps.

Results: P. betle L. - adulticide activity was effective with a concentration of 2.5 μl/ml, caused 100% mortality within 15-30 min. Larvicide activity was observed after 1 h, 24 h, and 48 h post-treatment with LC50183, 92.7, and 59.8 ppm and LC90> 637, 525, and 434.7 ppm, respectively. Oviposition activity index was −0.917 in 1000 ppm. In addition, the eggs number of A. aegypti oviposition with 100 ppm of essential oil P. betle L. was 5 times lower than the control.

Conclusion: This study demonstrated clearly that essential oil derived from P. betle L. potentially acts as alternate bioinsecticide to control A. aegypti population. The application can be varied or combined in different stages of mosquito development.

Keywords: adulticide, Aedes aegypti, larvicide, oviposition, Piper betle L.


1. WHO. (2009) Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. WHO, Geneva.

2. Indonesia, MOHRO. (2015) Demam Berdarah Biasanya Mulai Meningkat di Januari; 2018. Available from: Accessed on 21-01-2018.

3. WHO. (2007) Global Insecticide Use for Vector-Borne Disease Control. Available from: Accessed on 21-01-2018.

4. Hamid, P.H., Prastowo, J., Widyasari, A., Taubert, A. and Hermosilla, C. (2017) Knockdown resistance (kdr) of the voltage-gated sodium channel gene of Aedes aegypti population in Denpasar, Bali, Indonesia. Parasit. Vectors, 10(1): 283. [Crossref]

5. Hamid, P.H., Prastowo, J., Ghiffari, A., Taubert, A. and Hermosilla, C. (2017) Aedes aegypti resistance development to commonly used insecticides in Jakarta, Indonesia. PLoS One, 12(12): 1-11. [Crossref]

6. Sayono, S., Hidayati, A.P., Fahri, S., Sumanto, D., Dharmana, E., Hadisaputro, S., Asih, P.B. and Syafruddin, D. (2016) Distribution of voltage-gated sodium channel (Nav) alleles among the Aedes aegypti populations in central Java Province and its association with resistance to pyrethroid insecticides. PLoS One, 11(3): 1-12. [Crossref]

7. Wuliandari, J.R., Lee, S.F., White, V.L., Tantowijoyo, W., Hoffmann, A.A. and Endersby-Harshman, N.M. (2015) Association between three mutations, F1565C, V1023G and S996P, in the voltage-sensitive sodium channel gene and knockdown resistance in Aedes aegypti from Yogyakarta, Indonesia. Insects, 6(3): 658-685. [Crossref] [PubMed] [PMC]

8. Hamid, P.H., Ninditya, V.I., Prastowo, J., Haryanto, A., Taubert, A. and Hermosilla, C. (2018) Current status of Aedes aegypti insecticide resistance development from Banjarmasin, Kalimantan, Indonesia. Biomed. Res. Int., 2018-: 1-7. [Crossref]

9. Jbilou, R., Amri, H., Bouayad, N., Ghailani, N., Ennabili, A. and Sayah, F. (2008) Insecticidal effects of extracts of seven plant species on larval development, alpha-amylase activity and offspring production of Tribolium castaneum (Herbst) (Insecta: Coleoptera: Tenebrionidae). Bioresour. Technol., 99(5): 959-964. [Crossref] [PubMed]

10. Cheah, S.X., Tay, J.W., Chan, L.K. and Jaal, Z. (2013) Larvicidal, oviposition, and ovicidal effects of Artemisia annua (Asterales: Asteraceae) against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res., 112(9): 3275-3282. [Crossref] [PubMed]

11. Elumalai, D., Hemavathi, M., Hemalatha, P., Deepaa, C.V. and Kaleena, P.K. (2016) Larvicidal activity of catechin isolated from Leucas aspera against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res., 115(3): 1203-1212. [Crossref] [PubMed]

12. Hodijah, D.N. and Widawati, M. (2014) Potential topical natural repellent against Ae. aegypti, Culex Sp. and Anopheles Sp. Mosquitoes. J. Health Sci. Indones., 5(1): 44-48.

13. Jati, P.S. (2013) Model Backpropagation Neural Network Untuk Peramalan Kasus Demam Berdarah di D.I Yogyakarta. (Bachelor). Universitas Negeri Yogyakarta, Yogyakarta.

14. Wall, R. and Shearer, D. (2001) Veterinary Ectoparasites: Biology, Pathology and Control. 2nd ed. Blackwell Science Ltd., USA. [Crossref]

15. Baser, K.H.C. and Buchbauer, G. (2010) Handbook of Essential Oils: Science, Technology and Applications. CRC Press, New York.

16. Panneerselvan, C., Murugan, K., Kovendan, K. and Kumar, P.M. (2012) Mosquito larvacidal, pupicidal, adulticidal, and repellent activity of Artemisia nilagirica (Family: Compositae) against Anopheles stephensi and Aedes aegypti. Parasitol. Res., 111(6): 2241-2251. [Crossref] [PubMed]

17. Finey, D.J. (1971) Probit Analysis. Cambridge University Press, United Kingdom.

18. Brogdon, W.G. and Chan, A. (2010) Guideline for Evaluating Insecticide Resistance in Vectors Using the CDC Bottle Bioassay, Atlanta, USA.

19. Massebo, F., Tadesse, M., Balkew, M. and Michael, T.G. (2013) Bioactivity of essential oil of local plants against adult Anopheles arabiensis (Diptera: Culicidae) in Ethiopia. Adv. Biosci. Biotechnol. J., 4(8): 805-809. [Crossref]

20. CDC. (2016) Guideline for Evaluating Insecticide Resistance in Vectors Using the CDC Bottle Bioassay.

21. Perea, E.Z., Leon, R.B., Salcedo, M.P., Brogdon, W.G. and Davine, G.J. (2009) Adaptation and evaluation of the bottle assay for monitoring insecticide resistance in disease vector mosquitoes in the Peruvian Amazon. Malar. J., 8(208): 1-11.

22. Santana, H.T., Trindade, F.T.T. and Stabeli, R.G. (2015) Essential oil of leaves of piper species display larvacidal activity against the dengue vector, Aedes aegypti (Diptera: Culicuidae). Rev. Bras. Plantas Med., 17(1): 105-111.

23. Morais, S.M., Facundo, V.A., Bertini, L.M., Cavalcanti, E.S.B., Junior, J.F.A., Ferreira, S.A., Brito, E.S. and Neto, M.A. (2007) Chemical composition and larvicidal activity of essential oils from Piper species. Biochem. Syst. Ecol., 35(10): 670-675. [Crossref]

24. Oliveira, G.L., Cardoso, S.K., Larajunior, C.R., Vieira, T.M., Guimares, E.F., Figueiredo, L.S., Martins, E.R., Moreira, D.L. and Kaplan, M.A. (2013) Chemical study and larvacidal activity against Aedes aegypti of essential oil of Piper aduncum L. (Piperaceae). An. Acad. Bras. Cienc., 85(4): 1227-1234. [Crossref] [PubMed]

25. Tennyson, S., Arivoli, S., Raveen, R., Bobby, M. and Dhinamala, K. (2012) Larvicidal activity of Areca nicotiana tabacum and Piper betle Leaf extracts against the dengue vector Aedes aegypti (Culicidae). Int. J. Res. Biol. Sci., 2(4): 157-160.

26. Donatus, L.A. (2005) Toksikologi Dasar. UGM Press, Yogyakarta.

27. Usta, J., Kreydiyyeh, S., Bakajian, K. and Nakkash-Chmaisse, H. (2002) In vitro effect of eugenol and cinnamaldehyde on membrane potential and respiratory complexes in isolated rat liver mitochondria. Food Chem. Toxicol., 40(7): 935-940. [Crossref]

28. Srinivasan, P.V., Nathan, S.S., Ponsarkar, A., Thanigaivel, A., Edwin, E.S., Rani, S.S., Chellappandian, M., Pradeepa, V., Escaline, J.L., Kalaivani, K., Hunter, W.B., Duraipandiyan, V. and Al-Dhabi, N.A. (2017) Comparative analysis of mosquito (Diptera: Culicidae: Aedes aegypti Liston) responses to the insecticide temephos and plant-derived essential oil derived from Piper betle L. Ecotoxicol. Environ. Saf., 139: 439-446. [Crossref]

29. Lima, J.B., Da-Cunha, M.P., Silva, R.C.D., Galardo, A.K. and Soares, S.S. (2003) Resistance of Aedes aegypti to organophosphates in several municipalities in the state of Rio de Janeiro and Espirito Santo, Brazil. Am. J. Trop. Med. Hyg., 68(3): 329-333. [Crossref]

30. Llinas, G.A., Seccacini, E., Gardenal, C.N. and Licastro, S. (2010) Current resistance status to temephos in Aedes aegypti from different regions of Argentina. Mem. Inst. Oswaldo Cruz, 105(1): 113-116. [Crossref]

31. Biber, P.A., Duenas, J.R., Almeida, F.L., Gardenal, C.N. and Almiron, W.R. (2006) Laboratory evaluation of susceptibility of natural subpopulations of Aedes aegypti larvae to temephos. J. Am. Mosq. Control Assoc., 22(3): 408-411.

32. Rodriguez, M.M., Bisset, J., Fernandez, D.M., Lauzan, L. and Soca, A. (2001) Detection of insecticide resistance in Aedes aegypti (Diptera: Culicidae) from Cuba and Venezuela. J. Med. Entomol., 38(5): 623-628. [Crossref]

33. Grisales, N., Poupardin, R., Gomez, S., Gonzalez, I.F., Ranson, H. and Lenhart, A. (2014) Temephos resistance in Aedes aegypti in Colombia compromises dengue vector control. PLoS Negl. Trop. Dis., 7(9): 1-10.

34. Mulyatno, K.C., Yamanaka, A., Ngadino, and Konishi, E. (2012) Resistance of Aedes aegypti (L.) Larvae to temephos in Surabaya, Indonesia. Southeast Asian J. Trop. Med. Public Health, 43(1): 29-33. [PubMed]

35. Silva, P.C.B., Dutra, K.A., Santos, G.K., Silva, R.C.S., Lulek, J., Pinheiro, P.M. and Navarro, D.M.A. (2016) Evaluation of the activity of the essential oil from an ornamental flower against Aedes aegypti: Electrophysiology, molecular dynamics and behavioral assays. PLoS One, 11(2): 1-15.

36. Prajapati, V., Tripathi, A.K., Aggarwal, K.K. and Khanuja, S.P.S. (2005) Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresour. Technol., 96(16): 1749-1757. [Crossref] [PubMed]

37. Tawatsin, A., Asavadachanukorn, P., Thavara, U., Wongsinkongman, P., Bansidhi, J. and Boonruad, T. (2006) Repellency of essential oils extracted from plants in Thailand against four mosquito vectors (Diptera: Culicidae) and oviposition deterrent effects against Aedes aegypti (Diptera: Culicidae). Southeast Asian J. Trop. Med. Public Health, 37(5): 915-931. [PubMed]

38. Kumar, S., Wahab, N. and Warikoo, R. (2011) Bioefficacy of Mentha piperita essential oil against dengue fever mosquito Aedes aegypti L. Asian Pac. J. Trop. Biomed., 1(2): 85-88. [Crossref]