Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access

Copyright: The authors. This article is an open access article licensed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use, distribution and reproduction in any medium, provided the work is properly cited.


Research (Published online: 18-12-2014)

12. Identification and sequence analysis of Tapasin gene in guinea fowl - Varuna P. Panicker and R. Uma

Veterinary World, 7(12): 1099-1102

 

 

   doi: 10.14202/vetworld.2014.1099-1102

 

 

Varuna P. Panicker: Department of Veterinary Biochemistry, Faculty of Veterinary and Animal Sciences, Mannuthy, Thrissur, India; drpanickerpvarunavet@gmail.com

R. Uma: Department of Veterinary Biochemistry, Faculty of Veterinary and Animal Sciences, Mannuthy, Thrissur, India; umarahul@gmail.com

 

Received: 12-09-2014, Revised: 13-11-2014, Accepted: 18-11-2014, Published online: 18-12-2014

 

Corresponding author: Varuna P. Panicker, email:drpanickerpvarunavet@gmail.com



Aim: An attempt has been made to identify and study the nucleotide sequence variability in exon 5 - exon 6 regions of guinea fowl Tapasin gene.

Materials and Methods: Blood samples were collected from randomly selected birds (12 guinea fowl birds) and Tapasin gene amplified using chicken specific primers designed from GenBank submitted sequences. Polymerase chain reaction conditions were standardized so as get only single amplicons. Obtained products were then cloned and sequenced; sequences were then analyzed using suitable software.

Results: Amplicon size of the Tapasin gene in guinea fowl was same as reported in chicken with areas of transitions and transversions. The sequence variations reported in these coding sequences might have influence in the protein structure, which may be correlated with the increased immune status of the bird when compared with chicken breeds.

Conclusion: Since Tapasin gene is an immunologically important gene, which plays an important role in the immune status of the bird. Sequence variations in the gene can be correlated with the altered immune status of the bird.

Keywords: guinea fowl, Immunity, Tapasin gene.



1. Bjorkman, P.J. and Parham, P. (1990) Structure, function and diversity of Class I major histocompatibility compex molecules. Annu. Rev. Biochem., 59: 253-288.
http://dx.doi.org/10.1146/annurev.bi.59.070190.001345
PMid:2115762
 
2. Chun, T., Grandea, A.G., Lybarger, L., Forman, J., Van Kaer, L. and Wang, C.R. (2001) Functional roles of TAP and tapasin in the assembly of M3-N-formylated peptide complexes. J. Immunol., 167(3): 1507-1514.
http://dx.doi.org/10.4049/jimmunol.167.3.1507
PMid:11466371
 
3. Devasahayam, M. (2009) Interaction of tapasin related protein with cell surface MHC class I heavy chain molecules. Indian J. Exp. Biol., 47(10): 792-798.
PMid:20112805
 
4. Everett, M.W. and Edidin, M. (2007) Tapasin increases efficiency of MHC I assembly in the endoplasmic reticulum but does not affect MHC I stability at the cell surface. J. Immunol., 179(11): 7646-7652.
http://dx.doi.org/10.4049/jimmunol.179.11.7646
PMid:18025210
 
5. Jacob, J.P., Milne, S., Beck, S. and Kaufman, J. (2000) The major and a minor Class II β- chain (B-LB) gene flank the Tapasin gene in the B-F/B-L region of the chicken major histocompatibility complex. Immunogenetics, 51: 138-147.
http://dx.doi.org/10.1007/s002510050022
PMid:10663576
 
6. Kaufman, J. (2008) The avian MHC. Avian Immunol., 10:159-173.
http://dx.doi.org/10.1016/B978-012370634-8.50011-1
 
7. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI- BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25(17): 3389-3402.
http://dx.doi.org/10.1093/nar/25.17.3389
PMid:9254694 PMCid:PMC146917
 
8. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., Mc Gettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. and Higgins, D.G. (2007) Clustal W and clustal X version 2.0. Bioinformatics. 23(21): 2947-2948.
http://dx.doi.org/10.1093/bioinformatics/btm404
PMid:17846036
 
9. Scanes, C.G. (2007) The global importance of poultry. J. Poult. Sci., 86(6): 1057-1058.
http://dx.doi.org/10.1093/ps/86.6.1057
 
10. Dvir, H., Wang, J., Ly, N., Dascher, C.C. and Zajonc, D.M. (2010) Structural basis for lipid-antigen recognition in avian immunity. J. Immunol. 184(5): 2504-2511.
http://dx.doi.org/10.4049/jimmunol.0903509
PMid:20100930 PMCid:PMC3100803
 
11. Chaves, L.D., Krueth, S.B. and Reed, K.M. (2009) Defining the turkey MHC: Sequence and genes of the B locus. J. Immunol., 183(10): 6530-6537.
http://dx.doi.org/10.4049/jimmunol.0901310
PMid:19864609
 
12. Bauer, M.M. and Reed, K.M. (2011) Extended sequence of the turkey MHC B-locus and sequence variation in the highly polymorphic B-G loci. Immunogenetics, 63(4): 209-221.
http://dx.doi.org/10.1007/s00251-010-0501-9
PMid:21207020
 
13. Neefjes, J., Jongsma, M.L., Paul, P. and Bakke, O. (2011) Towards a systems understanding of MHC Class I and MHC Class II antigen resentation. Nat. Rev. Immunol., 11(12): 823-836.
PMid:22076556
 
14. Demirel, O., Bangert, I., TampeŽ, R. and Abele, R. (2010) Tuning the cellular trafficking of the lysosomal peptide transporter TAPL by its N-terminal domain. Traffic. 11: 383-393.
http://dx.doi.org/10.1111/j.1600-0854.2009.01021.x
PMid:20377823
 
15. Walker, B.A., Hunt, L.G., Sowa, A.K., Skjodt, K., Gobel, T.W., Lehner, P.J. and Kaufman, J. (2011) The dominantly expressed Class I molecule of the chicken MHC is explained by coevolution with the polymorphic peptide transporter (TAP) genes. Proc Natl. Acad. Sci. USA. 108(20): 8396-8401.
http://dx.doi.org/10.1073/pnas.1019496108
PMid:21536896 PMCid:PMC3100931
 
16. Moreki, J.C. and Seabo, D. (2012) Guinea fowl production in Botswana. J. World's Poult. Res.,. 2(1): 01-04.
 
17. Raghuraman, G., Lapinski, P.E. and Raghavan, M. (2002) Tapasin Interacts with the Membrane- spanning domains of both TAP subunits and enhances the stuctural stability of TAP1.TAP2 complexes. J. Biol. Chem., 277: 41786-41794.
http://dx.doi.org/10.1074/jbc.M207128200
PMid:12213826
 
18. Howarth, M., Williams, A., Tolstrup, A.B. and Elliot, T. (2004) Tapasin enhances MHC Class Iation according to peptide half-life. Proc. Natl. Acad. Sci. USA. 101(32): 11737-11742.
http://dx.doi.org/10.1073/pnas.0306294101
PMid:15286279 PMCid:PMC511045
 
19. Sironi, L., Lazzari, B., Ramelli, P., Gorni, C. and Mariani, P. (2006) Single nucleotide polymorphism discovery in the avian Tapasin gene. J. Poult. Sci., 85(4): 606-612.
http://dx.doi.org/10.1093/ps/85.4.606