Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

ISSN (Print): 0972-8988


Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ

Open Access

Copyright: The authors. This article is an open access article licensed under the terms of the Creative Commons Attribution License

( which permits unrestricted use, distribution and reproduction in any medium, provided the work is properly cited.

Research (Published online: 04-11-2014)

1. Fly proof net shed for livestock: A novel concept of physical barrier for integrated management of Culicoides spp. (Diptera: Ceratopogonidae) - B. W. Narladkar and P. R. Shivpuje

Veterinary World, 7(11): 899-908



   doi: 10.14202/vetworld.2014.899-908



B. W. Narladkar: Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Maharashtra Animal and Fishery

Sciences University, Parbhani, Maharashtra, India;

P. R. Shivpuje: Department of Agricultural Entomology, Marathwada Agricultural University, Parbhani, Maharashtra, India;


Received: 02-08-2014, Revised: 15-09-2014, Accepted: 25-09-2014, Published online: 04-11-2014


Corresponding author: B. W. Narladkar, e-mail:

Aim: An age old and time tested technique of mosquito net requiring no energy, used by humans since prehistoric period was the inspiration behind this novel technique of fly proof net shed for livestock. With the aim to develop similar type of net shed for animals, which will protect them at night from biting of range of insects from Culicoides midges to mosquitoes, research was undertaken.

Materials and Methods: Net shed with pitch roof (gable type) was erected for use of livestock. The open inlet area was covered with 40 mesh size wire net. The roof at attic level was fitted with hurricane type of ventilator. Shed was used for animals at night hours only. vane anemometer was used for estimation of temperature and wind related parameters. Thermal humidity index (THI) and air changes were calculated as per the standard formulas. Based on these parameters suitability of shed was judged.

Results: It was observed that, due to netting of the shed population of Culicoides and other flies and incidences of their bites at night hours were considerably lowered. As a result, animals were found comfortable, and their body movements undertaken for wiping off these flies were significantly reduced from 196.50 to 22.16. All it accrued to increased milk yield to the tune of 18.97% in the net shed buffaloes as against control shed. Studies on suitability and comfort to animals were tested by estimating THI and air changes per hour in the net shed, which also revealed the estimates in comfortable regimen and ventilation, remained not much affected despite of netting. Other parameters studied for testing its more accuracy by taking other species of animals as kids, for them also, shed was found suitable through estimation of various physiological and behavioral parameters. Finally, the efficacy of shed was judged on the basis of cost effectiveness. Highly encouraging results on the above said parameters endorsed the effectiveness of the technique.

Conclusion: A net shed with pitch roof (gable type) fitted with hurricane type ventilator at its top serves the purpose of a physical barrier to minimize host-pest contact. Observations recorded in the experiment are sound enough to conclude and to recommend the use of net shed for livestock.

Keywords: Culicoides spp., fly proof net shed, integrated pest management, livestock, physical barrier.

1. Borkent A. (2014). World species of biting midges (Diptera: Ceratopogonidae). Available from: Accessed on 23-07-2014.
2. Mellor, P., Baylis, M. and Mertens, P. (2009) Bluetongue. Elsevier, Oxford, UK.
3. Gorhe, D.S., Khot, J.B., Paranjpe, V.L. and Manjrekar, S.L. (1965) Observations on the outbreak of South African horse sickness in India during 1960-1961. Bombay Vet. Coll. Mag., 5-15.
4. Mellor, P.S. (1993) African horse sickness: transmission and epidemiology. Vet. Res., 24:199-212.
5. Ilango, K. (2006) Bluetongue outbreak in Tamil Nadu, Southern India: Needs to study the Indian biting midge, vectors, Culicoides Lattreille (Diptera: Ceratopogoniae). Curr. Sci., 90: 163-167.
6. Prasad, G., Jain, N.C. and Gupta, Y. (1992) Bluetongue virus infection in India: A review. Rev. Sci. Tech. Off. Int. Epizoot., 11(3): 699-711.
7. Jain, N.C., Prasad, G., Gupta, Y. and Mahajan, N.K (1988). Isolation of bluetongue virus from Culicoides sp. in India. Rev. Sci. Tech. Off. Int. Epizoot., 7(2): 375-378.
8. Dadawala, A.I., Biswas, S.K., Rehman, W., Chand, K., De, A., Mathapati, B.S., Kumar, P., Cauhan, H.C., Chandel, B.S. and Mondal, B. (2012) Isolation of bluetongue virus serotype 1 from Culicoides vector captured in livestock farms and sequence analysis of the viral genome sgment-2. Trans. Emerg. Dis., 59: 361-368.
9. Halder, A., Joardar, S.N., Parui, P., Banerjee, D., Kumar, V., Samanta, I. and Lodh, C. (2013) Prevalence of midges; potent vectors for bluetongue virus infection in West Bengal, India. Adv. Anim. Vet. Sci., 1(4S): 45-50.
10. Narladkar, B.W., Shastri, U.V. and Shivpuje, P.R. (1993) Studies on Culicoides spp. (Diptera: Ceratopogonidae) prevalent in Marathwada region (Maharashtra) and their host preferences. Indian Vet. J., 70: 116-118.
11. Sreenivasulu, V., Subba Rao, M.V., Reddy, Y.N. and Gard, G.P. (2004) Overview of bluetongue disease, viruses, vectors, surveillance and unique features: the Indian subcontinent and adjacent regions. Vet. Ital., 40(3): 73-77.
12. Anon. (2012) Annual Report of All India Network Programme on Bluetongue. 9th Annual Review Meeting. Indian Council of Agricultural Research, New Delhi. p26.
13. Wheeler, E.B. (2003) Horse Stable ventilation. Chapter 7. In: Penn State Agricultural research and Cooperative Extension Publications. Produced by Information and Communication Technologies in the College of Agricultural Sciences. Pennsylvania State University. Available from: Accessed on 23-01-2012.
14. Turnbull, J.E. and Huffman, H.E. Fan ventilation principles and rates as PLAN M 9700. Available from: NEW 87:06 Assessed on 27-07-2014.
15. Venter, G.J. and Meiswinkel, R. (1994) The virtual absence of Culicoides imicola (Diptera: Ceratopogonidae) in a light trap survey of the colder, high-lying area of the eastern Orange Free State, South Africa, and implications for the transmission of arboviruses. Onderstepoort J. Vet. Res., 61(4): 327-340.
16. Bianca, W. (1962) Relative importance of dry- and wet-bulb temperatures in causing heat stress in cattle. Nature, 195:251-252.
17. Vision 2020. (1998) In: Perspective Plan Committee MAU, editor. Marathwada Agricultural University Parbhani Perspective Plan. Perspective Plan Committee MAU, Parbhani. p13-14.
18. Ehrlenbruch, R., Eknæs, M., Pollen, T., Inger Lise Andersen, I.L. and Boe, K.E. (2010) Water intake in dairy goats-the effect of different types of roughages. Ital. J. Anim. Sci., 9: 400-403.
19. Dawson, L. James, A. and Olcott, B. (2004) Meat goat herd health-procedures and prevention. In: Web based training and certification program for meat goat producers. Available from: Accessed on 26-07-2014.
20. Goetsch, A.L., Gipson, T.A., Askar, A.R. and Puchala, R. (2008) Invited review: Feeding behavior of goats. J. Anim. Sci., 88: 361-373.
21. Animut, G., Goetsch, A.L., Aiken, G.E., Puchala, R., Detweiler, G., Krehbiel, C.R., Merkel, R.C., Sahlu, T., Dawson, L.J., Johnson, Z.B. and Gipson, T.A. (2005) Grazing behavior and energy expenditure by sheep and goats co-grazing grass/forb pastures at three stocking rates. Small Rumin. Res., 59: 191-201.
22. Abdelsalam, M.M. and AL-Seaf, A.M. (2013) Behavioral aspects of Aradi and its first cross with Damascus goats throughout vital stages of their lives. J. Agric. Vet. Sci. 6: 3-16. Available from: Accessed on 26-7-2014.
23. Prescriber, special issue No 18, Jan 2000. UNICEF publication with cooperation of WHO Available from: http://www.unicef.orgprescribereng_p18.pdf. Accessed on 21-12-2012.
24. FAO bulletin "Netting flies and mosquitoes protects livestock, boosts milk yields in Rome". Published on 27 March 2013. Available from:‎ Accessed on 26-06-2013.
25. Bouraoui, R., Lahmar, M., Majdoub, A., Djemali, M., and Belyea R. (2002) The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Anim. Res., 51: 479-491.
26. Abdel Rahman, I.M.K., Nagpaul, P.K. and Singh, B. (2013) Effect of two different shelter systems on milk yield and composition, feed intake, feed conversion efficiency and physiological responses in lactating crossbred goats during summer season. Egypt. J. Sheep. Goat Sci., 8(1): 81-87. Available from: Accessed on 26-07-2014.
27. Morrison, S.R. (1983) "Ruminant heat stress: effect on production and means of alleviation." J. Anim. Sci., 57: 1594-1600.
28. Dahlanuddin, T.C.J. and Hill, M.K. (1996) Effects of increasing ambient temperature on the intake and digestibility of high- and low-quality feedstuffs in goats. J. Anim. Physiol. Anim, Nutr., 75: 185-191.
29. Patil, R.A., Karanjkar, L.M., Jadhav, V.S., Hanmante, A.A. and Narwade, S.G. (2005) Effect of housing patterns on microclimate and water intake in osmanabadi weaned kids. Vet. World, 1: 144-146.
30. Srikandakumar, A., and Johnson, E.H. (2004) Effect of heat stress on milk production, rectal temperature, respiratory rate and blood chemistry in Holstein, Jersey and Australian milking Zebu cows. Trop. Anim. Health Prod., 36: 685-692.
31. Silanikove, N. (2000) Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest. Prod. Sci., 67: 1-18.
32. Cook, N.B., Bennett, T.B. and Nordlund, K.V. (2005) Monitoring indices of cow comfort in free-stall-housed dairy herds. J. Dairy Sci. 88: 3876-3885.
33. Metcalf, J.A., Roberts, S.J. and Sutton, J.D. (1992) Variations in blood flow to and from the bovine mammary gland measured using transit time ultrasound and dye dilution. Res. Vet. Sci., 53: 59-63.
34. Calvete, C., Estrada, R., Miranda, M.A., Del Rio, R., Borrás D., Beldron F.J., Martínez A., Calvo, A.J. and Lucientes J. (2010) Protection of livestock against bluetongue virus vector Culicoides imicola using insecticide-treated netting in open areas. Med. Vet. Entomol., 24(2): 169-75.
35. Furtado, D.A., Carlos, A.V.G., Medeiros, A.N., Edgard, C.P.F. and Valdi, L.Jr. (2008) Effect of the thermal environment and supplementation of the physiological variables in the Moxotó goats. Engenharia Agrícola., 28: 396-405.
36. Silva, R.G. (2000) In: Introduction to Biolclmatology. Nobel, Sao Paulo. p286.
37. Teixeira, M.C. and Modesto, E.C. (2005) Physiological parameters of heifers kept in irrigated grazing system in the semi-arid Northeast. In: Annual Meeting of the Brazilian Society of Animal Science, 42, 2005, Goiânia. Anais. Goiânia: Brazilian Society of Animal Science, CD-ROM. p1.
38. Webster, A.J.F. (1983) Environmental stress and the physiology, performance and health of ruminants. J. Anim. Sci., 57: 1584-1593.