| 
              
              
              Open Access  
Copyright: The authors. This article is an open access 
article licensed under the terms of the Creative Commons Attribution License 
 
 
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use, 
distribution and reproduction in any medium, provided the work is properly 
cited. 
 
              
              
              Research 
(Published 
online: 04-11-2014) 
              
              2. Effect of higher temperature exposure on 
              physicochemical properties of frozen buffalo meat - M. 
              R. Vishnuraj, G. Kandeepan and Vivek Shukla 
              
              Veterinary World, 7(11): 909-915   
              
   
                
                
doi: 
              10.14202/vetworld.2014.909-915 
                  M. R. 
              Vishnuraj: 
              
              Division of Livestock Products Technology, Indian Veterinary 
              Research Institute, Izatnagar, Bareilly - 243 122,
              
               
              
              Uttar Pradesh, India;
              
              vishnurajmr@gmail.com G. 
              Kandeepan: 
              
              Division of Livestock Products Technology, Indian Veterinary 
              Research Institute, Izatnagar, Bareilly - 243 122, Uttar 
              Pradesh, India;
              
              drkandee@gmail.com Vivek 
              Shukla: Division of Livestock Products Technology, Indian 
              Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar 
              Pradesh, India;
              
              drvivekivri@gmail.com   Received: 
              15-07-2014, Revised: 03-10-2014, Accepted: 08-10-2014, Published 
              online: 04-11-2014   
              
              
              Corresponding author:
              
              M. R. Vishnuraj, e-mail: vishnurajmr@gmail.com 
 
              Abstract 
 Aim:
              The aim was to study the changes in various physicochemical 
              parameters of frozen buffalo meat undergone temperature abuse at 
              two different isothermal storage temperatures (37±1°C, 25±1°C) 
              using a simulated model. 
              Materials and Methods: Frozen buffalo meat was evaluated after 
              exposing to various temperature abuse conditions over selected 
              durations for different meat quality parameters including pH, 
              extract release volume (ERV), flourescein diacetate (FDA) 
              hydrolysis, free amino acid (FAA), total volatile basic nitrogen (TVBN) 
              and D-glucose value and compared against a control sample 
              maintained at 4±1°C. 
              Results: Of the various meat quality parameters evaluated pH, 
              FDA hydrolysis, FAA content and TVBN content showed a significant 
              (p<0.05) increase in temperature abused samples after temperature 
              abuse and on subsequent refrigerated storage. However, ERV and 
              D-glucose content decreased significantly (p<0.05) in temperature 
              abused buffalo meat during the same period of study. 
              Conclusions: The present study featured the influence of 
              exposure temperature and duration in various physicochemical 
              parameters and the rate of spoilage development in frozen buffalo 
              meat after temperature abuse. 
              Keywords: buffalo meat, physicochemical parameters, spoilage, 
              temperature abuse. 
 
              References 
 
                
                  | 1. APEDA. (2012) Export of agro and processed food products 
                  including meat and meat products. Agricultural and Processed 
                  Food Products Export Development Authority, Ministry of 
                  Commerce, Government of India, New Delhi. |  
                  |  |  
                  | 2. Nychas, G.J.E., Skandamis, P.N., Tassou, C.C. and 
                  Koutsoumanis, K.P. (2008) Meat spoilage during distribution. 
                  Meat Sci., 78(1-2): 77-89. http://dx.doi.org/10.1016/j.meatsci.2007.06.020
 PMid:22062098
 |  
                  |  |  
                  | 3. Ingham, S.C., Fanslau, M.A., Burnham, G.M., Ingham, B.H., 
                  Norback, J.P. and Shafner, D.W. (2007) Predicting pathogen 
                  growth during short term temperature abuse of raw pork, beef, 
                  and poultry products: Use of an isothermal based predictive 
                  model. J. Food Prot., 70(6): 1445-1454. |  
                  |  |  
                  | 4. Singhal, R.S., Kulkarni, P.R. and Rege, D.V. (1997) 
                  Handbook of Indices of Food Quality and Authenticity. Woodhead 
                  Publishing Ltd., Cambridge. http://dx.doi.org/10.1533/9781855736474
 |  
                  |  |  
                  | 5. Nychas, G.J.E., Marshall, D. and Sofos, J. (2007). Meat 
                  poultry and seafood. In: Doyle, M.P. Beuchat, L.R. and 
                  Montville, T.J., editors. Food Microbiology: Fundamentals and 
                  Frontiers. Washington DC: ASM Press. |  
                  |  |  
                  | 6. Jay, J.M., Loessner, M.J. and Golden, D.A. (2005) Modern 
                  Food Microbiology. 7th ed. Springer, New York. |  
                  |  |  
                  | 7. Kandeepan, G. and Biswas, S. (2007) Effect of domestic 
                  refrigeration on keeping quality of buffalo meat. J. Food 
                  Technol., 5(1): 29-35. |  
                  |  |  
                  | 8. Venkitanarayanan, K.S., Faustman, C., Hoagland, T. and 
                  Berry, B.W. (1997) Estimation of spoilage bacterial load on 
                  meat by fluorescein diacetate hydrolysis or resazurin 
                  reduction. J. Food Sci., 62: 601-604. http://dx.doi.org/10.1111/j.1365-2621.1997.tb04440.x
 |  
                  |  |  
                  | 9. Byun, J.S., Min, J.S., Kim, I.S., Kim, J.W., Chung, M.S. 
                  and Lee, M. (2003) Comparison of Indicators of microbial 
                  quality of meat during aerobic cold storage. J. Food Prot., 
                  66: 1733-1737. PMid:14503737
 |  
                  |  |  
                  | 10. Strange, E.D., Benedict, R.C., Smith, J.L. and Swift, C.E. 
                  (1977) Evaluation of rapid tests for monitoring alterations in 
                  meat quality during storage. I. Intact meat. J. Food Prot., 
                  40: 843-847. |  
                  |  |  
                  | 11. Rosen, H. (1957) A modified ninhydrin colourimetric 
                  analysis for amino acids. Arch. Biochem. Biophys., 67(9): 
                  10-15. http://dx.doi.org/10.1016/0003-9861(57)90241-2
 |  
                  |  |  
                  | 12. Pearson, D. (1968) Application of chemicals methods for 
                  the assessment of beef quality II. Methods related to protein 
                  breakdown. J. Sci. Food Agric., 19: 366-369. http://dx.doi.org/10.1002/jsfa.2740190703
 |  
                  |  |  
                  | 13. Galgano, F., Favati, F., Bonadio, M., Lorusso. V. and 
                  Romano, P. (2009) Role of biogenic amines as index of 
                  freshness in beef meat packed with different biopolymeric 
                  material. Food Res. Int., 42: 1147-1152. http://dx.doi.org/10.1016/j.foodres.2009.05.012
 |  
                  |  |  
                  | 14. Kandeepan, G., Anjaneyulu, A.S.R., Kondaiah, N. and 
                  Mendiratta, S.K. (2010) Quality of buffalo meat keema at 
                  different storage temperature. Afr. J. Food Sci., 4(6): 
                  410-417. |  
                  |  |  
                  | 15. Kandeepan, G., Anjaneyulu, A.S.R., Kondaiah, N. and 
                  Mendiratta, S.K. (2011) Comparison of quality attributes of 
                  buffalo meat curry at different storage temperature. Acta. Sci. 
                  Pol. Technol. Aliment., 10(1): 83-95. |  
                  |  |  
                  | 16. Yang, X., Balamurugau, S. and Gill, C.O. (2011) Effectes 
                  on the development of blown pack spoilage of the initial 
                  numbers of Clostridium estertheticum spores and Leuconostoc 
                  mesenteroides on vakuum packed beef. Meat Sci., 88: 361-367. http://dx.doi.org/10.1016/j.meatsci.2011.01.010
 PMid:21316870
 |  
                  |  |  
                  | 17. Clemens, R.M., Adam, K.H., Brightwell, G. (2010) 
                  Contamination levels of Clostridium estertheticum spores that 
                  result in gaseous spoilage of vakuum-packaged chilled beef and 
                  lamb meat. Appl. Microbiol., 50: 591-596. http://dx.doi.org/10.1111/j.1472-765X.2010.02838.x
 PMid:20406381
 |  
                  |  |  
                  | 18. Silva, A.R., Tahara, A.C.C., Chaves, R.D., Sant’Ana, A.S., 
                  Faria, J.A.F. and Massaguer, P.R. (2012) Influence of 
                  different shrinking temperatures and vakuum conditions on the 
                  ability of psychrotrophic Clostridium to cause "blown pack" 
                  spoilage in chilled vakuum-packed beef. Meat Sci., 92: 
                  498-505. http://dx.doi.org/10.1016/j.meatsci.2012.05.017
 PMid:22721639
 |  
                  |  |  
                  | 19. Shelef, L.A., and Jay, J.M. (1970) Use of a titrimetric 
                  method to assess the bacterial spoilage of fresh beef. Appl. 
                  Microbiol., 19: 902-905. PMid:4917189 PMCid:PMC376820
 |  
                  |  |  
                  | 20. Pearson, D. (1976) The Chemical Analysis of Foods. 7th ed. 
                  Churchill Livingston, Edinburgh. |  
                  |  |  
                  | 21. David, I.E., and Goodacre, R. (2001) Rapid and 
                  quantitative detection of the microbial spoilage of muscle 
                  foods: Current status and future trends. Trends. Food Sci. 
                  Tech., 12: 414-424. http://dx.doi.org/10.1016/S0924-2244(02)00019-5
 |  
                  |  |  
                  | 22. Gill, C.O. and Newton, K.G. (1977) The development of 
                  aerobic spoilage flora on meat stored at chill temperatures. 
                  J. Appl. Bacteriol., 43(2): 189-195. http://dx.doi.org/10.1111/j.1365-2672.1977.tb00742.x
 PMid:22531
 |  
                  |  |  
                  | 23. Doulgeraki, A.I. and Nychas, G.J.E. (2013) Monitoring the 
                  succession of the biota grown on a selective medium for 
                  pseudomonads during storage of minced beef with 
                  molecular-based methods. Food Microbiol., 34: 62-69. http://dx.doi.org/10.1016/j.fm.2012.11.017
 PMid:23498179
 |  
                  |  |  
                  | 24. Bruckner, S., Albrecht, A., Petersen. B. and Kreyenschmidt, 
                  J. (2012) Characterization and comparison of spoilage 
                  processes in fresh pork and poultry. J. Food Qual., 35: 
                  372-382. http://dx.doi.org/10.1111/j.1745-4557.2012.00456.x
 |  
                  |  |  
                  | 25. Ercolini, D., Russo, F., Nasi, A., Ferranti, P. and 
                  Villani, F. (2009) Mesophilic and psychrotrophic bacteria from 
                  meat and their spoilage potential in vitro and in beef. Appl. 
                  Environ. Microbiol., 75(7): 1990-2001. http://dx.doi.org/10.1128/AEM.02762-08
 PMid:19201980 PMCid:PMC2663181
 |  
                  |  |  
                  | 26. Anbalagan, M., GaneshPrabu, P., Krishnaveni, R.E. and 
                  Manivannan, S. (2014) Effect of low temperature on the 
                  bacterial load in chicken, mutton and beef meat in relation to 
                  meat spoilage. Int. J. Res. Pure. Appl. Microbiol., 4(1): 1-6. |  |