| 
              
              
              Open Access  
Copyright: The authors. This article is an open access 
article licensed under the terms of the Creative Commons Attribution License 
 
 
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use, 
distribution and reproduction in any medium, provided the work is properly 
cited. 
 
              
              
              Research 
(Published 
online: 30-11-2014) 
              22.
              Bone marrow derived cell-seeded 
              extracellular matrix: A novel biomaterial in the field of wound 
              management - V. Remya, Naveen Kumar, A. K. Sharma, 
              Dayamon D. Mathew, Mamta Negi, S. K. Maiti, Sameer Shrivastava, Sonal and N. P. Kurade 
              
              Veterinary World, 7(11): 1019-1025   
              
   
                
                
doi: 
              10.14202/vetworld.2014.1019-1025 
              
               
                V. 
              Remya: 
              
              Division of Surgery, Indian Veterinary Research Institute, 
              Izatnagar, Uttar Pradesh, India;
              
              
              remyamukund04vet@gmail.com Naveen 
              Kumar: 
              
              Division of Surgery, Indian Veterinary Research Institute, 
              Izatnagar, Uttar Pradesh, India;
              
              
              naveen.ivri1961@gmail.com A. K. 
              Sharma: 
              
              Division of Surgery, Indian Veterinary Research Institute, 
              Izatnagar, Uttar Pradesh, India;
              
              
              ashok.sharma1010@gmail.com Dayamon 
              D. Mathew: 
              
              Division of Surgery, Indian Veterinary Research Institute, 
              Izatnagar, Uttar Pradesh, India;
              
              
              dayamon@gmail.com Mamta 
              Negi: 
              
              Division of Surgery, Indian Veterinary Research Institute, 
              Izatnagar, Uttar Pradesh, India;
              
              
              mamtaanegi@gmailcom S. K. 
              Maiti: 
              
              Division of Surgery, Indian Veterinary Research Institute, 
              Izatnagar, Uttar Pradesh, India;
              
              
              maiti_62@rediffmail.com Sameer 
              Shrivastava: 
              
              Division of Veterinary Biotechnology, Indian Veterinary Research 
              Institute, Izatnagar, Uttar Pradesh, India;
              
              
              sameer_vet@rediffmail.com Sonal: 
              
              Division of Veterinary Biotechnology, Indian Veterinary Research 
              Institute, Izatnagar, Uttar Pradesh, India;
              
              
              sonalvet@gmail.com N. P. 
              Kurade: Division of Pathology, Indian Veterinary Research 
              Institute, Izatnagar, Uttar Pradesh, India;
              
              npkurade@yahoo.co.in   Received: 
              04-06-2014, Revised: 19-10-2014, Accepted: 24-10-2014, Published 
              online: 30-11-2014   
              
              
              Corresponding author:
              
              V. Remya: e-mail: remyamukund04vet@gmail.com 
 
              Abstract 
 Aim:
              Extensive or irreversible damage to the skin often requires 
              additional skin substitutes for reconstruction. Biomaterials have 
              become critical components in the development of effective new 
              medical therapies for wound care. 
              Materials and Methods: In the present study, a cell matrix 
              construct (bone marrow-derived cells (BMdc) seeded extracellular 
              matrix [ECM]) was used as a biological substitute for the repair 
              of full-thickness skin wound. ECM was developed by decellularizing 
              fish swim bladder (FSB). Goat bone marrow-derived cells (G-BMdc) 
              were seeded over this decellularized matrix. Efficacy of this cell 
              matrix construct in wound repair was tested by implanting it over 
              20 mm2 × 20 mm2 size fullthickness skin wound 
              created over the dorsum of rat. The study was conducted in 16 
              clinically healthy adult rats of either sex. The animals were 
              randomly divided into 2 equal groups of 8 animals each. In Group 
              I, animal’s wounds were repaired with a cellular FSB matrix. In 
              Group II, wounds were repaired with G-BMdc seeded a cellular FSB 
              matrix. Immune response and efficacy of healing were analyzed. 
              Results: Quality of healing and immuno tolerance to the 
              biological substitute was significantly better in Group II than 
              Group I. 
              Conclusion: Seeding with BMdc increases the wound healing 
              potency and modulates the immune response to a significantly 
              negligible level. The BMdc seeded acellular FSB matrix was found 
              to be a novel biomaterial for wound management.  
              Keywords: biomaterial, decellular, extra cellular matrix, 
              wound. 
 
              References 
 
                
                  | 1. Clark, R.A.F., Ghosh, K. and Tonnesen, M.G. (2007) Tissue 
                  engineering for cutaneous wounds. J. Invest. Dermatol., 127: 
                  1018-1029. http://dx.doi.org/10.1038/sj.jid.5700715
 PMid:17435787
 |  
                  |  |  
                  | 2. Badylak, S.F. (2002) The extracellular matrix as a scaffold 
                  for tissue reconstruction. Semin. Cell. Dev. Biol., 13(5): 
                  377-383. http://dx.doi.org/10.1016/S1084952102000940
 PMid:12324220
 |  
                  |  |  
                  | 3. Bellows, C.F., Albo, D., Berger, D.H. and Awad, S.S. (2007) 
                  Abdominal wall repair using human acellular dermis. Am. J. 
                  Surg., 194(2): 192-198. http://dx.doi.org/10.1016/j.amjsurg.2006.11.012
 PMid:17618803
 |  
                  |  |  
                  | 4. Harth, K.C. and Rosen, M.J. (2009) Major complications 
                  associated with xenograft biologic mesh implantation in 
                  abdominal wall reconstruction. Surg. Innov., 16: 324-329. http://dx.doi.org/10.1177/1553350609353609
 PMid:20031943
 |  
                  |  |  
                  | 5. Pascual, G., Sotomayor, S., Rodriguez, M., Kohler, B.P. and 
                  Bellon, J.M. (2012) Repair of abdominal wall defects with 
                  biodegradable laminar prostheses: Polymeric or biological. 
                  Plos One, 7(12): 1-11. http://dx.doi.org/10.1371/journal.pone.0052628
 PMid:23285119 PMCid:PMC3528658
 |  
                  |  |  
                  | 6. Gulati, A.K. and Cole, G.P. (1994) Immunogenicity and 
                  regenerative potential of acellular nerve allograft to repair 
                  peripheral nerve in rats and rabbits. Acta Neurochir., 
                  126(2-4): 158-164. http://dx.doi.org/10.1007/BF01476427
 |  
                  |  |  
                  | 7. Kumar, N., Gangwar, A.K., Sharma, A.K., Negi, M., 
                  Shrivastava, S., Mathew, D.D., Remya, V., Sonal, S, Maiti, S.K., 
                  Devi, K.S., Kumar, V., Ramteke, P.W., Kaarthick, D.T. and 
                  Kurade, N.P. (2013) Extraction techniques for the 
                  decellularization of rat dermal constructs. Trends Biomater. 
                  Artif. Organs., 27: 102-103. |  
                  |  |  
                  | 8. Gilbert, T.W., Sellaro, T.L. and Badylak, S.F. (2006) 
                  Decellularization of tissues and organs. Biomaterials, 27: 
                  3675-3683. PMid:16519932
 |  
                  |  |  
                  | 9. Lee, C.H., Singla, A. and Lee, Y. (2001) Biomedical 
                  application of collagen. Int. J. Pharm., 221: 21-22. http://dx.doi.org/10.1016/S0378-5173(01)00691-3
 |  
                  |  |  
                  | 10. Van der Laan, J.S., Lopez, G.P., Van, P.B., Nieuwenhuis, 
                  P., Ratner, B.D., Bleichrodt, R.P. and Schakenraad, J.M. 
                  (1991) TFE-plasma polymerized dermal sheep collagen for the 
                  repair of abdominal wall defects. Int. J. Artif. Organs, 
                  14(10): 661-666. PMid:1836203
 |  
                  |  |  
                  | 11. Dong, S.W., Ying, D.J., Duan, X.J., Xie, Z. and Yu, Z.J., 
                  Zhu, C.H., Yang, B and Sun, J.S. (2009) Bone regeneration 
                  using an acellular extracellular matrix and bone marrow 
                  mesenchymal stem cells expressing C bfa1. Biosci. Biotechnol. 
                  Biochem., 73(10): 2226-2233. http://dx.doi.org/10.1271/bbb.90329
 PMid:19809195
 |  
                  |  |  
                  | 12. Cheng, H.L., Loai, Y., Beaumont, M. and Farhat, W.A (2010) 
                  The acellular matrix (ACM) for bladder tissue engineering: A 
                  quantitative magnetic resonance imaging study. Magn. Reson. 
                  Med., 64(2): 341-348. PMid:20665777
 |  
                  |  |  
                  | 13. Boer, U., Lohrenz, A., Klingenberg, M., Pich, A., Haverich, 
                  A. and Wilhelmi, M. (2011) The effect of detergent based 
                  decellularization procedures on cellular proteins and 
                  immunogenicity in equine carotid artery grafts. Biomaterials, 
                  32(36): 9730-9737. http://dx.doi.org/10.1016/j.biomaterials.2011.09.015
 PMid:21944468
 |  
                  |  |  
                  | 14. Kheir, E., Stapleton, T., Shaw, D., Jin, Z., Fisher, J. 
                  and Ingham, E. (2011) Development and characterization of an 
                  acellular porcine cartilage bone matrix for use in tissue 
                  engineering. J. Biomed. Mater. Res. A., 99(2): 283-294. http://dx.doi.org/10.1002/jbm.a.33171
 PMid:21858917
 |  
                  |  |  
                  | 15. Stapleton, T.W., Ingram, J., Fisher, J. and Ingham, E. 
                  (2011) Investigation of the regenerative capacity of an 
                  acellular porcine medial meniscus for tissue engineering 
                  applications. Tissue Eng. Part. A., 17(1-2): 231-242. http://dx.doi.org/10.1089/ten.tea.2009.0807
 PMid:20695759 PMCid:PMC3011925
 |  
                  |  |  
                  | 16. Zhao, Y., Zhang, Z., Wang, J., Yin, P., Zhou, J., Zhen, 
                  M., Cui, W., Xu, G., Yang, D. and Liu, Z. (2012) Abdominal 
                  hernia repair with a decellularized dermal scaffold seeded 
                  with autologous bone marrow derived mesenchymal stem cells. 
                  Artif. Organs., 36(3): 247-255. http://dx.doi.org/10.1111/j.1525-1594.2011.01343.x
 PMid:21899574
 |  
                  |  |  
                  | 17. Kumar, V., Kumar, N., Sharma, A.K., Maiti, S.K., Gangwar, 
                  A.K., Singh, H., Shrivastava, S., Sonal, S and Rai, R.B. 
                  (2012) Acellular buffalo small intestinal submucosa and fish 
                  swim bladder for repair of full-thickness skin wounds in 
                  rabbit. In proceeding of: 9th World Biomaterials Congress, 
                  Chengdu, China. Abstract No.:52. p104. |  
                  |  |  
                  | 18. Gangwar, A.K., Kumar, N., Sharma, A.K. Devi, S., Negi, M., 
                  Shrivastava, S., Mathew, D.D., Remya, V., Sonal, S., Arundeep, 
                  P.S., Maiti, S.K., Kumar, V., Kaarthick, D.T., Kurade, N.P. 
                  and Singh, R. (2013) Bioengineered acellular dermal matrix for 
                  the repair of full thickness skin wounds in rats. Trends 
                  Biomater. Artif. Org., 27: 67-80. |  
                  |  |  
                  | 19. Rose, C., Mandal, A.B. and Joseph, K.T. (1998) 
                  Characterization of collagen from the swim bladder of catfish 
                  (Tachysurus maculates). Asian Fish Sci., 11: 1-10. |  
                  |  |  
                  | 20. Le Blanc, K., Tammik, L., Sundberg, B., Haynesworth, S.E. 
                  and Ringdén, O. (2003) Mesenchymal stem cells inhibit and 
                  stimulate mixed lymphocyte cultures and mitogenic responses 
                  independently of the major histocompatibility complex. Scand. 
                  J. Immunol., 57(1): 11-20. http://dx.doi.org/10.1046/j.1365-3083.2003.01176.x
 PMid:12542793
 |  
                  |  |  
                  | 21. Kumar, V. (2010) Acellular buffalo small intestinal 
                  submucosa and fish swim bladder for the repair of full 
                  thickness skin wounds in rabbits. M. V. Sc. Thesis Submitted 
                  to Indian Veterinary Research Institute, Deemed University, 
                  Izatnagar, Bareilly, Uttar Pradesh, India. |  
                  |  |  
                  | 22. Boyum, A. (1968) Isolation of mononuclear cells and 
                  granulocytes from human blood. Scand. J. Clin. Lab. Invest., 
                  21: 77-89. |  
                  |  |  
                  | 23. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, 
                  R.J. (1951) Protein measurement with the folin phenol reagent. 
                  J. Biol. Chem., 193(1): 265-275. PMid:14907713
 |  
                  |  |  
                  | 24. Kruisbeek, A.M. and Shevach, E.M. (2004) Proliferative 
                  assays for T cell function. In: Coligan, E., Margulies, D.H., 
                  Shevach, E.M. and Strober, W., editors. Current Protocols in 
                  Immunology. Unit 3.12. John Wiley, New York. p1-3. http://dx.doi.org/10.1002/0471142735.im0312s60
 PMid:18432927
 |  
                  |  |  
                  | 25. Seddon, A.M., Curnow, P. and Booth, P.J. (2004) Membrane 
                  proteins, lipids and detergents: Not just a soap opera. 
                  Biochim. Biophys. Acta, 1666(1-2): 105-117. http://dx.doi.org/10.1016/j.bbamem.2004.04.011
 PMid:15519311
 |  
                  |  |  
                  | 26. Woods, T. and Gratzer, P.F. (2005) Effectiveness of three 
                  extraction techniques in the development of a decellularized 
                  bone-anterior cruciate ligament-bone graft. Biomaterials, 
                  26(35): 7339-7349. http://dx.doi.org/10.1016/j.biomaterials.2005.05.066
 PMid:16023194
 |  
                  |  |  
                  | 27. Gangwar, A.K., Sharma, A.K., Kumar, N. Maiti, S.K. Gupta, 
                  O.P. Goswami T.K. and Singh, R. (2006) Acellular dermal graft 
                  for repair of abdominal wall defects in rabbits. J. S. Afr. 
                  Vet. Assoc., 77(2): 79-85. http://dx.doi.org/10.4102/jsava.v77i2.349
 PMid:17120624
 |  
                  |  |  
                  | 28. Purohit, S. (2008) Biocompatibility testing of acellular 
                  dermal grafts in a rabbit model: An in-vitro and in-vivo 
                  study. Ph.D. Thesis Submitted to Deemed University, I.V.R.I., 
                  Izatnagar, Bareilly (UP). |  
                  |  |  
                  | 29. Kaarthick, D.T. (2011) Repair of cutaneous wounds using 
                  acellular diaphragm and pericardium of buffalo origin seeded 
                  with in-vitro cultured mouse embryonic fibroblasts cells in 
                  rat model. M.V.Sc. Thesis Submitted to Deemed University, 
                  I.V.R.I., Izatnagar, Bareilly (UP). |  
                  |  |  
                  | 30. Yannas, I.V. (2005) Similarities and differences between 
                  induced organ regeneration in adults and early fetal 
                  regeneration. J. R. Soc. Interface, 2(5): 403-417. http://dx.doi.org/10.1098/rsif.2005.0062
 PMid:16849201 PMCid:PMC1618502
 |  
                  |  |  
                  | 31. Blanc, K.L., Fibbe, W., Frassoni, F., Locatelli, F. and 
                  Ringdén, O. (2004) Treatment of severe acute graft-versus-host 
                  disease with third party haploidentical mesenchymal stem 
                  cells. Lancet, 363(9419): 1439-1444. http://dx.doi.org/10.1016/S0140-6736(04)16104-7
 |  
                  |  |  
                  | 32. Ryan, M. Barry, P.F., Murphy, M.J. and Mahon, P.B. (2005) 
                  Mesenchymal stem cells avoid allogeneic rejection. J. Inflamm., 
                  2: 8. http://dx.doi.org/10.1186/1476-9255-2-8
 PMid:16045800 PMCid:PMC1215510
 |  |