Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

ISSN (Print): 0972-8988


Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ

Open Access

Copyright: The authors. This article is an open access article licensed under the terms of the Creative Commons Attribution License

( which permits unrestricted use, distribution and reproduction in any medium, provided the work is properly cited.

Research (Published online: 31-10-2014)

24. Variations in free radical scavenging activities and antioxidant responses in salivary glands of Hyalomma anatolicum anatolicum and Hyalomma dromedarii (Acari: Ixodidae) ticks - Mayukh Ghosh, Nirmal Sangwan and Arun K. Sangwan

Veterinary World, 7(10): 876-881



   doi: 10.14202/vetworld.2014.876-881



Mayukh Ghosh: Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences, Lala Lajpat Rai University of

Veterinary and Animal Sciences, Hisar, Haryana, India;

Nirmal Sangwan: Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences, Lala Lajpat Rai University of

Veterinary and Animal Sciences, Hisar, Haryana, India;

Arun K. Sangwan: Department of Veterinary Parasitology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India;


Received: 21-06-2014, Revised: 15-09-2014, Accepted: 22-09-2014, Published online: 31-10-2014


Corresponding author: Nirmal Sangwan, e-mail:

Aim: Hyalomma anatolicum anatolicum and Hyalomma dromedarii ticks are of major economic importance in the livestock sector as the vector of tropical theileriosis causing huge production loss, mostly in tropical countries. The release of different reactive oxygen and nitrogen species by exogenous and endogenous means can potentially induce oxidative damage to the ticks during their prolonged feeding on their vertebrate hosts. Hence, ticks need an effective free radical scavenging and antioxidant defense system for their successful feeding of a blood meal. Therefore, the present study was undertaken to evaluate the interspecies variations in antioxidant response, free radical scavenging, and anti-inflammatory activities in salivary gland extracts (SGE) of the two species as they differ considerably in relation to feeding behavior and host specificity.

Materials and Methods: Tick salivary glands were dissected out under ice from semi-fed female ticks of both the species and homogenized at low temperature to prepare SGE. SGE was stored at −40°C for analysis of free radical scavenging activities and antioxidant status.

Results: Significant depletion in reduced glutathione concentrations, malondialdehyde level and elevation in free radical scavenging activity, superoxide dismutase, anti-inflammatory activity were found in SGE of engorging female H. dromedarii ticks as compared to H. a. anatolicum.

Conclusion: Higher antioxidant status and free radical scavenging activities in H. dromedarii might have enabled these ticks to suck more blood from the host in spite of continuous host’s immune responses. These findings about tick biology will help in improving tick control strategies.

Keywords: anti-inflammatory, antioxidants, free radicals, Hyalomma anatolicum anatolicum, Hyalomma dromedarii.

1. Halliwell, B. and Gutteridge, J.M.C. (1989) In: Free Radical in Biology and Medicine. 2nd ed. Clarendon Press, Oxford.
2. Halliwell, B., Cross, C.E. and Gutteridge, J.M.C. (1992) Free radicals, antioxidants, and human disease: Where are we now? J. Clin. Lab. Med., 119: 598-620.
3. Kemp, D.H., Stone, B.F. and Binnington, K.C. (1982) Tick attachment and feeding: Role of the mouthparts, feeding apparatus, salivary gland secretions and host response. In: Obenchain, F.D. and Galun, R., editors. Physiology of Ticks. Pergamon Press, Oxford. p119-168.
4. Francischetti, I.M., Sa-Nunes, A., Mans, B.J., Santos, I.M. and Ribeiro, J.M. (2009) The role of saliva in tick feeding. Front. Biosci (Landmark Ed)., 14: 2051-2088.
5. Diaz-Albiter, H., Mitford, V., Genta, F.A., Sant-Anna, M.R.V. and Dillon, R.J. (2011) Reactive oxygen species scavenging by catalase is important for female Lutzomyia longipalpis fecundity and mortality. PLoS One, 6(3): e17486.
PMid:21408075 PMCid:PMC3052318
6. Ribeiro, J.M.C. and Francischetti, I.M. (2003) Role of arthropod saliva in blood feeding: Sialome and post-sialome perspectives. Annu. Rev. Entomol., 48: 73-88.
7. Wu, J., Wang, Y., Liu, H., Yang, H., Ma, D., Li, J., Li, D., Lai, R. and Yu, H. (2010) Two immunoregulatory peptides with antioxidant activity from tick salivary glands. J. Biol. Chem., 285(22): 1-19.
PMid:20178988 PMCid:PMC2878058
8. Sreejayan, N. and Rao, M.N.A. (1997) Nitric oxide scavenging by curcuminoids, J. Pharm. Pharmacol., 49(1): 105-107.
9. Halliwell, B., Gutteridge, J. and Aruoma, O.I. (1987) The deoxyribose method: A simple "test tube" assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem., 165 (1): 215-219.
10. Madesh, M. and Balasubramanian, K.A. (1998) Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian J. Biochem. Biophys., 35(3): 184-188.
11. Beutler, E. editor. (1971) Red Cell Metabolism Manual of Biochemical Methods. Academic Press, London. p68-70.
12. Ohkawa, H., Ohishi, N. and Yagi, K. (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 95(2): 351-358.
13. Shinde, U.A., Phadke, A.S., Nair, A.M., Mungantiwar, A.A., Dikshit, V.J. and Saraf, V.O. (1999) Membrane stabilizing activity – A possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia, 70: 251-257.
14. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein measurement with the Folin Phenol Reagent. J. Biol. Chem., 193 (1): 265-275.
15. Snedecor, G.W. and Cochran, W.J. (1967) In: Statistical Methods. 7th ed. Oxford and IBG Publishing Co., New Delhi.
16. Halliwell, B and Gutteridge, J.M.C. (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J., 219(1): 1-14.
PMid:6326753 PMCid:PMC1153442
17. Lipinski, B. and Pretorius, E. (2012) Hydroxyl radical-modified fibrinogen as a marker of thrombosis: the role of iron. Hematology, 17(4): 241-247.
18. Dizdaroglu, M. and Jaruga, P. (2012) Mechanisms of free radical induced damage to DNA. Free Radic. Res., 46(4): 382-419.
19. Kanno, T., Nakamura, K., Ikai, H., Kikuchi, K., Sasaki, K. and Niwano, Y. (2012) Literature review of the role of hydroxyl radicals in chemically-induced mutagenicity and carcinogenicity for the risk assessment of a disinfection system utilizing photolysis of hydrogen peroxide. J. Clin. Biochem. Nutr., 51(1): 9-14.
PMid:22798706 PMCid:PMC3391867
20. Fridovich, I. (1995) Superoxide radical and superoxide dismutases. Annu. Rev. Biochem., 64: 97-112.
21. Aon, M.A., Stanley, B.A., Sivakumaran, V., Kembro, J.M., O'Rourke, B., Paolocci, N. and Cortassa, S. (2012) Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study. J. Gen. Physiol., 139(6): 479-491.
PMid:22585969 PMCid:PMC3362521
22. Kowaltowski, A.J., de Souza-Pinto, N.C., Castilho, R.F. and Vercesi, A.E. (2009) Mitochondria and reactive oxygen species. Free Radic. Biol. Med., 47: 333-343.
23. Murphy, M.P. (2009) How mitochondria produce reactive oxygen species. Biochem. J., 417(1): 1-13.
PMid:19061483 PMCid:PMC2605959
24. Stowe, D.F. and Camara, A.K. (2009) Mitochondrial reactive oxygen species production in excitable cells: Modulators of mitochondrial and cell function. Antioxid. Redox Signal, 11(6): 1373-1414.
PMid:19187004 PMCid:PMC2842133
25. Saeaue, L., Morales, N.P., Komalamisra, N. and Vargas, R.E.M. (2011) Antioxidative systems defense against oxidative stress induced by blood meal in Aedes aegypti. Southeast Asian J. Trop. Med. Public Health, 42(3): 542-549.
26. Negre-Salvayre, A., Auge, N., Ayala, V., Basaga, H., Boada, J., Brenke, R., Chapple, S., Cohen, G., Feher, J., Grune, T., Lengyel, G., Mann, G. E., Pamplona, R., Poli, G., Portero-Otin, M., Riahi, Y., Salvayre, R., Sasson, S., Serrano, J., Shamni, O., Siems, W., Siow, R.C.M., Wiswedel, I., Zarkovic, K. and Zarkovic, N. (2010) Pathological aspects of lipid peroxidation. Free Radic. Res., 44(10): 1125-1171.
27. Zarkovic, N., Cipak, A., Jaganjac, M., Borovic, S. and Zarkovic, K. (2013) Pathophysiological relevance of aldehydic protein modifications. J. Proteomics, 92: 239-247.
28. Garcia, S.C., Grotto, D., Bulcão, R.P., Moro, A.M., Roehrs, M., Valentini, J., de Freitas, F.A., Panizo, C. and Charai, G.B.M.F. (2013) Evaluation of lipid damage related to pathological and physiological conditions. Drug Chem. Toxicol., 36(3): 306-312.
29. Li, G., Chen, Y., Hu, H., Liu, L., Hu, X., Wang, J., Shi, W. and Yin, D. (2012) Association between age-related decline of kidney function and plasma malondialdehyde, Rejuvenation Res., 15(3): 257-264.
PMid:22530729 PMCid:PMC3388493
30. Sanyal, J., Bandyopadhyay, S.K., Banerjee, T.K., Mukherjee, S.C., Chakraborty, D.P., Ray, B.C. and Rao, V.R. (2009) Plasma levels of lipid peroxides in patients with Parkinson's disease, Eur. Rev. Med. Pharmacol. Sci., 13(2): 129-132.
31. Bartoli, M.L., Novelli, F., Costa, F., Malagrinò, L., Melosini, L., Bacci, E., Cianchetti, S., Dente, F.L., Di Franco, A., Vagaggini, B. and Paggiaro, P.L. (2011) Malondialdehyde in exhaled breath condensate as a marker of oxidative stress in different pulmonary diseases. Mediat. Inflamm., 2011: 891752.
PMid:21772668 PMCid:PMC3136125