Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916


Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ

Open Access

Copyright: The authors. This article is an open access article licensed under the terms of the Creative Commons Attribution License

( which permits unrestricted use, distribution and reproduction in any medium, provided the work is properly cited.

Research (Published online: 18-08-2015)

9.  Genetic diversity and phylogenetic relationships in local cattle breeds of Senegal based on autosomal microsatellite markers - Ndèye Penda Ndiaye, Adama Sow, Guiguigbaza-Kossigan Dayo, Saliou Ndiaye, Germain Jerôme Sawadogo and Mbacké Sembène

Veterinary World, 8(8): 994-1005



   doi: 10.14202/vetworld.2015.994-1005


Ndèye Penda Ndiaye: Department of Animal Biology, FST (UCAD), Dakar Fann-PO 5005, Laboratory of Endocrinology and Radio-immunology, EISMV, Dakar Fann-PO 5077, Senegal;

Adama Sow: Laboratory of Endocrinology and Radio-immunology, EISMV, Dakar Fann-PO 5077, Senegal;

Guiguigbaza-Kossigan Dayo: CIRDES, Bobo Dioulasso 01-PO 454, Burkina Faso;

Saliou Ndiaye: ENSA, University of Thiès, Thiès RP-PO A 296, Senegal;

Germain Jerôme Sawadogo: Laboratory of Endocrinology and Radio-immunology, EISMV, Dakar Fann-PO 5077, Senegal;

Mbacké Sembène: Department of Animal Biology, FST (UCAD), Dakar Fann-PO 5005, Laboratory CBGP, IRD, Dakar Bel Air- PO 1386, Senegal;


Received: 27-03-2015, Revised: 09-07-2015, Accepted: 20-07-2015, Published online: 18-08-2015


Corresponding author: Ndèye Penda Ndiaye, e-mail:

Citation: Ndiaye NP, Sow A, Dayo GK, Ndiaye S, Sawadogo GJ, Sembène M (2015) Genetic diversity and phylogenetic relationships in local cattle breeds of Senegal based on autosomal microsatellite markers, Veterinary World 8(8): 994-1005.

Aim: In Senegal, uncontrolled cross-breeding of cattle breeds and changes in production systems are assumed to lead to an increase of gene flow between populations. This might constitute a relevant threat to livestock improvement. Therewith, this study was carried out to assess the current genetic diversity and the phylogenetic relationships of the four native Senegalese cattle breeds (Gobra zebu, Maure zebu, Djakoré, and N’Dama).

Methods: Genomic DNA was isolated from blood samples of 120 unrelated animals collected from three agro-ecological areas of Senegal according to their phenotypic traits. Genotyping was done using 11 specific highly polymorphic microsatellite makers recommended by Food and Agriculture Organization. The basic measures of genetic variation and phylogenetic trees were computed using bioinformatics’ software.

Results: A total of 115 alleles were identified with a number of alleles (Na) at one locus ranging from 6 to 16. All loci were polymorphic with a mean polymorphic information content of 0.76. The mean allelic richness (Rs) lay within the narrow range of 5.14 in N’Dama taurine to 6.10 in Gobra zebu. While, the expected heterozygosity (HE) per breed was high in general with an overall mean of 0.76±0.04. Generally, the heterozygote deficiency (FIS) of 0.073±0.026 was relatively due to inbreeding among these cattle breeds or the occurrence of population substructure. The high values of allelic and gene diversity showed that Senegalese native cattle breeds represented an important reservoir of genetic variation. The genetic distances and clustering trees concluded that the N’Dama cattle were most distinct among the investigated cattle populations. So, the principal component analyses showed qualitatively that there was an intensive genetic admixture between the Gobra zebu and Maure zebu breeds.

Conclusions: The broad genetic diversity in Senegalese cattle breeds will allow for greater opportunities for improvement of productivity and adaptation relative to global changes. For the development of sustainable breeding and crossbreeding programs of Senegalese local breeds, effective management is needed towards genetic selection and transhumance to ensure their long-term survival.

Keywords: cattle, genetic diversity, microsatellite markers, phylogenetic analysis, Senegal.

1. Gueye, M. (2011). The future of the African livestock: salvation by the value chain. SOS Faim, défis sud., 98 : 26-28.
2. Diawara, I. (1984). Evolution of cattle farming in the sylvo-pastoral area of Senegal. Thesis of Veterinary Medicine. Dakar: EISMV, p 103.
3. Cissé, M. (1992). Current situation of dairy production in Senegal. Dakar : LNERV, p13.
4. Broutin, C., Sokona, K., Tandia, A., Ba, M. (2000). Business landscape and environment of milk spinneret in Senegal: Study of spinneret. Dakar: GRET and Network TPA, p 56.
5. Courtin, F.S.L., Rouamba, J., Jammoneau, V., Gouro, A. and Solano, P. (2009). Population growth and global warming: Impacts on tsetse and trypanosomiasis in West Africa. Parasite, 16: 3-10.
6. Touré, S.M. (1977). Trypanotolerance: Review of knowledge. Rev. Elev. Méd. Vét. Pays Trop., 30: 157-174.
7. Lhoste, P.H. (1978). The West African taurine breeds: situation and conservation Communication to Study Day of Ethnozootechnie (ORSTOM), May 1978. Zootechnical Research Center. Côte d'Ivoire: INRA, 26 : 126-128.
8. Chandler, R.L.J. (1958). Studies on the tolerance N'Dama cattle to trypanosomiasis. J. Comp. Pathol., 68:253.
9. Meyer, C., ed. sc. (2013). Dictionary of Animal Science. [Online]. Montpellier, France, CIRAD. Available from: Accessed on 03-12-2013.
10. Dia, D., Broutin, C., Duteurtre, G. (2009). The systems of milk collection in West Africa: failure or hope? Grain de Sel., 46-47: 18-19.
11. FAO. (2012). Transhumance - Cross-border in West Africa: Proposal for a plan of action. FAO report, p 146.
12. Ndiaye, N.P., Sow, A., Sawadogo, G.J. and Sembène, M. (2012). Biochemical and genetic identification of Senegalese cattle breeds (Artiodactyla: Bovidae). E3 J. Biotechnol. Pharm. Res., 3: 149-160.
13. FAO. (2011). Molecular Genetic Characterization of Animal Genetic Resources. FAO Animal Production and Health Guidelines. No. 9. Rome. p85.
14. Boettcher, P.J., Hoffmann, I., Baumung, R., Drucker, A.G., McManus, C., Berg, P., Stella, A., Nilsen, L.B., Moran, D., Naves, M. and Thompson, M.C. (2015). Genetics resources and genomics for adaptation of livestock to climate change. Front. Genet., doi: 10.3389/fgene.2014.00461.
15. MacHugh, D.E., Shriver, M.D., Loftus, R.T., Cunningham, P., Bradley, D.G. (1997). Microsatellites DNA Variation and the Evolution, Domestication and Phylogeography of Taurine and Zebu cattle (Bos taurus and Bos indicus). Genetics, 146: 1071-1086.
PMid:9215909 PMCid:PMC1208036
16. Hanotte, O., Tawah, C.L, Bradley, D.G., Okomo, M., Verjee, Y. and Ochieng, J., and Rege, J.E. (2000). Geographic distribution and frequency of a taurine Bos Taurus and an indicine Bos indicus Y specific allele amongst sub-Saharan African cattle breeds. Mol. Ecol., 9: 387-396.
17. Freeman, A.R., Meghen, C.M., MacHugh, D.E., Loftus, R.T., Achukwi, M.D., Bado, A., Sauveroche, B. and Bradley, D.G. (2004). Admixture and diversity in West African cattle populations. Mol. Ecol., 13: 3477-3487.
18. Oosterhout, C.V., William, F.H., Wills, D.P. and Shipley, P. (2004). Program Note: Microchecker: Softaware for identififying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes., 4: 535-538.
19. Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89: 853-590.
20. Nei, M. (1987). Molecular Evolutionnary Genetics. Columbia University Press, New York. p506.
21. Weir, C.A. and Cockerham, C.C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38: 1358-1370.
22. Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N., Bonhomme, F. (2004). GENETIX 4.05, Software under Windows TM for population genetics. Laboratory of Genome, Populations, Interactions, CNRS UMR 5171, University of Montpellier II, Montpellier, France. Available from: Accessed on 14-08-2014.
23. Goudet, J. (2002). FSTAT, a program to estimate and test gene diversities and fixation indices (version Available from: Updated from Goudet (1995). Accessed on 14-08-2014.
24. El-Mousadik, A. and Petit, R.J. (1996). High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor. Appl. Genet., 92: 832-839.
25. Peakall, R. and Smouse, P.E. (2012). GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research – An update. Bioinformatics, 28: 2537-2539.
PMid:22820204 PMCid:PMC3463245
26. Botstein, D., White, R.L., Skolnick, M., and Davies, R.W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Human. Genet., 32:314-331.
PMid:6247908 PMCid:PMC1686077
27. Kalinnowski, S.T., Taper, M.L., and Marshall, T.C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol., 16: 1099-1106.
28. SAS (Statistical Analysis System) Institute Inc. STATVIEW version 5.0. (1998). Available from: Accessed on 11-07-2014.
29. Rousset, F. (2008). GENEPOP'007: A complete re-implementation of the GENEPOP software for windows and Linux. Mol. Ecol. Res., 8: 103-106.
30. Nei, M., Tadjima, F. and Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J. Mol. Evol., 19: 153-170.
31. Sneath, P.H.A. and Sokal, R.R. (1973). Numerical Taxonomy: The Principles and Practice of Numerical Classification. Feeman, San Francisco, USA. p573.
32. Cavalli-Sforza L.L. and Edwards, A.W. (1967). Phylogenetic analysis: Models and estimation procedures. Evolution, 21: 550-570.
33. Nguyen, T.T., Genini, S., Bui, L.C., Veogeli, P., Stranzinger, G., Renard, J.P., Maillard, J.C. and Nguyen, B.X. (2007). Genomic conservation of cattle microsatellite loci in wild gaur (Bos gaurus) and current genetics status of this species in Vietnam. BMC Genet., 8:77.
PMid:17986322 PMCid:PMC2190770
34. Langella, O. (1999). POPULATIONS version 1.2.28. Population genetic software (individuals or populations distances, phylogenetic trees). CNRS, France, Available from: Accessed on 29-09-2014.
35. Rambaut, A. (2014). Fig Tree version 1. 4. 2. Available from: http: // Accessed on 29-09-2014.
36. Dayo, G.K., Thevenon, S., Berthier, D., Moazami-Goudarzi, K., Denis, C., Cuny, G., Eggen, A. and Gautier, M. (2009). Detection of selection signatures within candidate regions underlying trypanotolerance in outbred cattle populations. Mol. Ecol., 18: 1801-1813.
37. Cymbron, T., Freeman, A.R., Malheiro, I.M., Vigne, J.D. and Bradley, D.G. (2005). Microsatellite diversity suggests different histories for Mediterranean and Northern European cattle populations. Proc. R. Soc. B., 272: 1837-1843.
PMid:16096097 PMCid:PMC1559860
38. Moazami-Goudarzi, K., Belemsaga, D.M.A., Ceriotti, G., Laloe, D., Fagbohoun, F., Kouagou, N.T., Sidibé, I., Codjia, V., Crimella, M.C., Grosclaude, F., Touré, S.M. (2001). Characterization of Somba bovine breed using molecular markers. Rev. Elev. Méd. Vét. Pays Trop., 54: 129-138.
39. Ngono Ema, P.J., Manjeli, Y., Meutchieyié, F., Keambou, C., Wanjala, B., Desta, A.F., Ommeh, S., Skilton, R. and Djikeng, A. (2014). Genetic diversity of four Cameroonian indigenous cattle using microsatellite markers. J. Livestock. Sci., 5: 9-17.
40. Foulley, J.L. and Ollivier, L. (2006). Genetic diversity and allelic richness: concepts and application to bovine breeds. Renc. Rech. Ruminants., 13: 227-230.
41. Ndiaye, N.P., Sow, A., Ndiaye, S., Sembène, M., Sawadogo G.J. (2014). Phenotypical Characterization of Senegalese Local Cattle Breeds Using Multivariate Analysis. J. Anim. Vet. Adv., 13: 1150-1159.
42. Gross, B.L. and Rieseberg, L.H. (2005). The ecological genetics of homoploid hybrid speciation. J. Hered., 96: 241-252.
PMid:15618301 PMCid:PMC2517139
43. Bessa, I., Pinhero, I., Matola, M., Dzama, K., Rocha, A. and Alexandrino, P. (2009). Genetic diversity and relationships among indigenous Mozambican cattle breeds. S. Afr. J. Anim. Sci., 39: 61-72.
44. Boichard, D., Maignel, L. and Verrier, E. (1997). The value of using probabilities of gene origin to measure genetic variability in a population. Genet. Sel. Evol., 19: 5-23.
45. De Meeûs, T. (2012). Initiation to the genetic of natural populations: Application to parasites and their vectors. Marseille: IRD Editions, Collection Didactiques, p 335.
46. Sharma, R., Maitra, A., Singh, P.K, Tantia, M.S. (2013). Genetic diversity and relationship of cattle populations of East India: distinguishing lesser known cattle populations and established breeds based on STR markers. SpringerPlus, 2: 359. Available from: on 15-02-2015.