| 
              
              
              Open Access  
Copyright: The authors. This article is an open access 
article licensed under the terms of the Creative Commons Attribution License 
 
 
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use, 
distribution and reproduction in any medium, provided the work is properly 
cited. 
 
              
              
              Research 
              
              
(Published online: 
              18-08-2015) 
              
              9.  
              
              Genetic diversity and phylogenetic relationships in local cattle 
              breeds of Senegal based on autosomal microsatellite markers 
              -
              
              Ndèye 
              Penda Ndiaye, Adama Sow, Guiguigbaza-Kossigan Dayo, Saliou Ndiaye, 
              Germain Jerôme Sawadogo and Mbacké Sembène 
              
              Veterinary World, 8(8): 994-1005   
              
   
                
                
doi: 
              10.14202/vetworld.2015.994-1005   
              Ndèye Penda Ndiaye: 
              
              Department of Animal Biology, FST (UCAD), Dakar Fann-PO 5005, 
              Laboratory of Endocrinology and Radio-immunology, EISMV, Dakar 
              Fann-PO 5077, Senegal; 
              
              ndeye1.ndiaye@ucad.edu.sn 
              Adama Sow: 
              
              Laboratory of Endocrinology and Radio-immunology, EISMV, Dakar 
              Fann-PO 5077, Senegal; 
              
              wosamada@yahoo.fr 
              Guiguigbaza-Kossigan Dayo: 
              CIRDES, 
              Bobo Dioulasso 01-PO 454, Burkina Faso; 
              
              charlesdayo@yahoo.fr 
              Saliou Ndiaye: 
              ENSA, 
              University of Thiès, Thiès RP-PO A 296, Senegal; 
              
              drsaliou@gmail.com 
              Germain Jerôme Sawadogo: 
              
              Laboratory of Endocrinology and Radio-immunology, EISMV, Dakar 
              Fann-PO 5077, Senegal; 
              
              gemgemswadogo@yahoo.fr 
              Mbacké Sembène: Department of Animal 
              Biology, FST (UCAD), Dakar Fann-PO 5005, Laboratory CBGP, IRD, 
              Dakar Bel Air- PO 1386, Senegal; 
              
              mbacke.sembene@ird.fr    Received: 
              27-03-2015, Revised: 09-07-2015, Accepted: 20-07-2015, Published 
              online: 18-08-2015    
              
              
              Corresponding author: 
              Ndèye 
              Penda Ndiaye, e-mail: ndeye1.ndiaye@ucad.edu.sn 
 
              Citation:Ndiaye 
              NP, Sow A, Dayo GK, Ndiaye S, Sawadogo GJ, Sembène M (2015) 
              Genetic diversity and phylogenetic relationships in local cattle 
              breeds of Senegal based on autosomal microsatellite markers, 
              Veterinary World 8(8): 994-1005. 
 
              Abstract 
 
              Aim: In Senegal, 
              uncontrolled cross-breeding of cattle breeds and changes in 
              production systems are assumed to lead to an increase of gene flow 
              between populations. This might constitute a relevant threat to 
              livestock improvement. Therewith, this study was carried out to 
              assess the current genetic diversity and the phylogenetic 
              relationships of the four native Senegalese cattle breeds (Gobra 
              zebu, Maure zebu, Djakoré, and N’Dama).  
              Methods: Genomic DNA was isolated from blood samples of 120 
              unrelated animals collected from three agro-ecological areas of 
              Senegal according to their phenotypic traits. Genotyping was done 
              using 11 specific highly polymorphic microsatellite makers 
              recommended by Food and Agriculture Organization. The basic 
              measures of genetic variation and phylogenetic trees were computed 
              using bioinformatics’ software.  
              Results: A total of 115 alleles were identified with a number 
              of alleles (Na) at one locus ranging from 6 to 16. All loci were 
              polymorphic with a mean polymorphic information content of 0.76. 
              The mean allelic richness (Rs) lay within the narrow range of 5.14 
              in N’Dama taurine to 6.10 in Gobra zebu. While, the expected 
              heterozygosity (HE) 
              per breed was high in general with an overall mean of 0.76±0.04. 
              Generally, the heterozygote deficiency (FIS) 
              of 0.073±0.026 was relatively due to inbreeding among these cattle 
              breeds or the occurrence of population substructure. The high 
              values of allelic and gene diversity showed that Senegalese native 
              cattle breeds represented an important reservoir of genetic 
              variation. The genetic distances and clustering trees concluded 
              that the N’Dama cattle were most distinct among the investigated 
              cattle populations. So, the principal component analyses showed 
              qualitatively that there was an intensive genetic admixture 
              between the Gobra zebu and Maure zebu breeds. 
              Conclusions: The broad genetic diversity in Senegalese cattle 
              breeds will allow for greater opportunities for improvement of 
              productivity and adaptation relative to global changes. For the 
              development of sustainable breeding and crossbreeding programs of 
              Senegalese local breeds, effective management is needed towards 
              genetic selection and transhumance to ensure their long-term 
              survival.  
              Keywords: cattle, genetic diversity, microsatellite markers, 
              phylogenetic analysis, Senegal.  
 
              References 
 
                
                  | 1. Gueye, M. (2011). The future of the African livestock: 
                  salvation by the value chain. SOS Faim, défis sud., 98 : 
                  26-28. |  
                  |  |  
                  | 2. Diawara, I. (1984). Evolution of cattle farming in the 
                  sylvo-pastoral area of Senegal. Thesis of Veterinary Medicine. 
                  Dakar: EISMV, p 103. |  
                  |  |  
                  | 3. Cissé, M. (1992). Current situation of dairy production in 
                  Senegal. Dakar : LNERV, p13. |  
                  |  |  
                  | 4. Broutin, C., Sokona, K., Tandia, A., Ba, M. (2000). 
                  Business landscape and environment of milk spinneret in 
                  Senegal: Study of spinneret. Dakar: GRET and Network TPA, p 
                  56. |  
                  |  |  
                  | 5. Courtin, F.S.L., Rouamba, J., Jammoneau, V., Gouro, A. and 
                  Solano, P. (2009). Population growth and global warming: 
                  Impacts on tsetse and trypanosomiasis in West Africa. 
                  Parasite, 16: 3-10. http://dx.doi.org/10.1051/parasite/2009161003
 PMid:19353946
 |  
                  |  |  
                  | 6. Touré, S.M. (1977). Trypanotolerance: Review of knowledge. 
                  Rev. Elev. Méd. Vét. Pays Trop., 30: 157-174. PMid:337422
 |  
                  |  |  
                  | 7. Lhoste, P.H. (1978). The West African taurine breeds: 
                  situation and conservation Communication to Study Day of 
                  Ethnozootechnie (ORSTOM), May 1978. Zootechnical Research 
                  Center. Côte d'Ivoire: INRA, 26 : 126-128. PMCid:PMC393075
 |  
                  |  |  
                  | 8. Chandler, R.L.J. (1958). Studies on the tolerance N'Dama 
                  cattle to trypanosomiasis. J. Comp. Pathol., 68:253. http://dx.doi.org/10.1016/S0368-1742(58)80025-9
 |  
                  |  |  
                  | 9. Meyer, C., ed. sc. (2013). Dictionary of Animal Science. 
                  [Online]. Montpellier, France, CIRAD. Available from: 
                  http://www.dico-sciences-animales.cirad.fr. Accessed on 
                  03-12-2013. |  
                  |  |  
                  | 10. Dia, D., Broutin, C., Duteurtre, G. (2009). The systems of 
                  milk collection in West Africa: failure or hope? Grain de 
                  Sel., 46-47: 18-19. |  
                  |  |  
                  | 11. FAO. (2012). Transhumance - Cross-border in West Africa: 
                  Proposal for a plan of action. FAO report, p 146. |  
                  |  |  
                  | 12. Ndiaye, N.P., Sow, A., Sawadogo, G.J. and Sembène, M. 
                  (2012). Biochemical and genetic identification of Senegalese 
                  cattle breeds (Artiodactyla: Bovidae). E3 J. Biotechnol. 
                  Pharm. Res., 3: 149-160. |  
                  |  |  
                  | 13. FAO. (2011). Molecular Genetic Characterization of Animal 
                  Genetic Resources. FAO Animal Production and Health 
                  Guidelines. No. 9. Rome. p85. |  
                  |  |  
                  | 14. Boettcher, P.J., Hoffmann, I., Baumung, R., Drucker, A.G., 
                  McManus, C., Berg, P., Stella, A., Nilsen, L.B., Moran, D., 
                  Naves, M. and Thompson, M.C. (2015). Genetics resources and 
                  genomics for adaptation of livestock to climate change. Front. 
                  Genet., doi: 10.3389/fgene.2014.00461. http://dx.doi.org/10.3389/fgene.2014.00461
 |  
                  |  |  
                  | 15. MacHugh, D.E., Shriver, M.D., Loftus, R.T., Cunningham, 
                  P., Bradley, D.G. (1997). Microsatellites DNA Variation and 
                  the Evolution, Domestication and Phylogeography of Taurine and 
                  Zebu cattle (Bos taurus and Bos indicus). Genetics, 146: 
                  1071-1086. PMid:9215909 PMCid:PMC1208036
 |  
                  |  |  
                  | 16. Hanotte, O., Tawah, C.L, Bradley, D.G., Okomo, M., Verjee, 
                  Y. and Ochieng, J., and Rege, J.E. (2000). Geographic 
                  distribution and frequency of a taurine Bos Taurus and an 
                  indicine Bos indicus Y specific allele amongst sub-Saharan 
                  African cattle breeds. Mol. Ecol., 9: 387-396. http://dx.doi.org/10.1046/j.1365-294x.2000.00858.x
 PMid:10736042
 |  
                  |  |  
                  | 17. Freeman, A.R., Meghen, C.M., MacHugh, D.E., Loftus, R.T., 
                  Achukwi, M.D., Bado, A., Sauveroche, B. and Bradley, D.G. 
                  (2004). Admixture and diversity in West African cattle 
                  populations. Mol. Ecol., 13: 3477-3487. http://dx.doi.org/10.1111/j.1365-294X.2004.02311.x
 PMid:15488005
 |  
                  |  |  
                  | 18. Oosterhout, C.V., William, F.H., Wills, D.P. and Shipley, 
                  P. (2004). Program Note: Microchecker: Softaware for 
                  identififying and correcting genotyping errors in 
                  microsatellite data. Mol. Ecol. Notes., 4: 535-538. http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x
 |  
                  |  |  
                  | 19. Nei, M. (1978). Estimation of average heterozygosity and 
                  genetic distance from a small number of individuals. Genetics, 
                  89: 853-590. |  
                  |  |  
                  | 20. Nei, M. (1987). Molecular Evolutionnary Genetics. Columbia 
                  University Press, New York. p506. |  
                  |  |  
                  | 21. Weir, C.A. and Cockerham, C.C. (1984). Estimating 
                  F-statistics for the analysis of population structure. 
                  Evolution, 38: 1358-1370. http://dx.doi.org/10.2307/2408641
 |  
                  |  |  
                  | 22. Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N., 
                  Bonhomme, F. (2004). GENETIX 4.05, Software under Windows TM 
                  for population genetics. Laboratory of Genome, Populations, 
                  Interactions, CNRS UMR 5171, University of Montpellier II, 
                  Montpellier, France. Available from: 
                  http://www.Kimura.univ-montp2.fr/genetix/constr.htm#download. 
                  Accessed on 14-08-2014. |  
                  |  |  
                  | 23. Goudet, J. (2002). FSTAT, a program to estimate and test 
                  gene diversities and fixation indices (version 2.9.3.2). 
                  Available from: http://www.unil.ch/izea/softwares/fstat.html. 
                  Updated from Goudet (1995). Accessed on 14-08-2014. |  
                  |  |  
                  | 24. El-Mousadik, A. and Petit, R.J. (1996). High level of 
                  genetic differentiation for allelic richness among populations 
                  of the argan tree [Argania spinosa (L.) Skeels] endemic to 
                  Morocco. Theor. Appl. Genet., 92: 832-839. http://dx.doi.org/10.1007/BF00221895
 PMid:24166548
 |  
                  |  |  
                  | 25. Peakall, R. and Smouse, P.E. (2012). GenAlEx 6.5: Genetic 
                  analysis in Excel. Population genetic software for teaching 
                  and research – An update. Bioinformatics, 28: 2537-2539. http://dx.doi.org/10.1093/bioinformatics/bts460
 PMid:22820204 PMCid:PMC3463245
 |  
                  |  |  
                  | 26. Botstein, D., White, R.L., Skolnick, M., and Davies, R.W. 
                  (1980). Construction of a genetic linkage map in man using 
                  restriction fragment length polymorphisms. Am. J. Human. 
                  Genet., 32:314-331. PMid:6247908 PMCid:PMC1686077
 |  
                  |  |  
                  | 27. Kalinnowski, S.T., Taper, M.L., and Marshall, T.C. (2007). 
                  Revising how the computer program CERVUS accommodates 
                  genotyping error increases success in paternity assignment. 
                  Mol. Ecol., 16: 1099-1106. http://dx.doi.org/10.1111/j.1365-294X.2007.03089.x
 PMid:17305863
 |  
                  |  |  
                  | 28. SAS (Statistical Analysis System) Institute Inc. STATVIEW 
                  version 5.0. (1998). Available from: 
                  http://www.statview.software.informer.com/5.0/. Accessed on 
                  11-07-2014. |  
                  |  |  
                  | 29. Rousset, F. (2008). GENEPOP'007: A complete 
                  re-implementation of the GENEPOP software for windows and 
                  Linux. Mol. Ecol. Res., 8: 103-106. http://dx.doi.org/10.1111/j.1471-8286.2007.01931.x
 PMid:21585727
 |  
                  |  |  
                  | 30. Nei, M., Tadjima, F. and Tateno, Y. (1983). Accuracy of 
                  estimated phylogenetic trees from molecular data. II. Gene 
                  frequency data. J. Mol. Evol., 19: 153-170. http://dx.doi.org/10.1007/BF02300753
 PMid:6571220
 |  
                  |  |  
                  | 31. Sneath, P.H.A. and Sokal, R.R. (1973). Numerical Taxonomy: 
                  The Principles and Practice of Numerical Classification. 
                  Feeman, San Francisco, USA. p573. |  
                  |  |  
                  | 32. Cavalli-Sforza L.L. and Edwards, A.W. (1967). Phylogenetic 
                  analysis: Models and estimation procedures. Evolution, 21: 
                  550-570. http://dx.doi.org/10.2307/2406616
 |  
                  |  |  
                  | 33. Nguyen, T.T., Genini, S., Bui, L.C., Veogeli, P., 
                  Stranzinger, G., Renard, J.P., Maillard, J.C. and Nguyen, B.X. 
                  (2007). Genomic conservation of cattle microsatellite loci in 
                  wild gaur (Bos gaurus) and current genetics status of this 
                  species in Vietnam. BMC Genet., 8:77. http://dx.doi.org/10.1186/1471-2156-8-77
 PMid:17986322 PMCid:PMC2190770
 |  
                  |  |  
                  | 34. Langella, O. (1999). POPULATIONS version 1.2.28. 
                  Population genetic software (individuals or populations 
                  distances, phylogenetic trees). CNRS, France, Available from: 
                  http://www.pge.cnrs-gif.fr. Accessed on 29-09-2014. |  
                  |  |  
                  | 35. Rambaut, A. (2014). Fig Tree version 1. 4. 2. Available 
                  from: http: //www.tree.bio.ed.ac.uk/. Accessed on 29-09-2014. |  
                  |  |  
                  | 36. Dayo, G.K., Thevenon, S., Berthier, D., Moazami-Goudarzi, 
                  K., Denis, C., Cuny, G., Eggen, A. and Gautier, M. (2009). 
                  Detection of selection signatures within candidate regions 
                  underlying trypanotolerance in outbred cattle populations. 
                  Mol. Ecol., 18: 1801-1813. http://dx.doi.org/10.1111/j.1365-294X.2009.04141.x
 PMid:19302350
 |  
                  |  |  
                  | 37. Cymbron, T., Freeman, A.R., Malheiro, I.M., Vigne, J.D. 
                  and Bradley, D.G. (2005). Microsatellite diversity suggests 
                  different histories for Mediterranean and Northern European 
                  cattle populations. Proc. R. Soc. B., 272: 1837-1843. http://dx.doi.org/10.1098/rspb.2005.3138
 PMid:16096097 PMCid:PMC1559860
 |  
                  |  |  
                  | 38. Moazami-Goudarzi, K., Belemsaga, D.M.A., Ceriotti, G., 
                  Laloe, D., Fagbohoun, F., Kouagou, N.T., Sidibé, I., Codjia, 
                  V., Crimella, M.C., Grosclaude, F., Touré, S.M. (2001). 
                  Characterization of Somba bovine breed using molecular 
                  markers. Rev. Elev. Méd. Vét. Pays Trop., 54: 129-138. |  
                  |  |  
                  | 39. Ngono Ema, P.J., Manjeli, Y., Meutchieyié, F., Keambou, 
                  C., Wanjala, B., Desta, A.F., Ommeh, S., Skilton, R. and 
                  Djikeng, A. (2014). Genetic diversity of four Cameroonian 
                  indigenous cattle using microsatellite markers. J. Livestock. 
                  Sci., 5: 9-17. |  
                  |  |  
                  | 40. Foulley, J.L. and Ollivier, L. (2006). Genetic diversity 
                  and allelic richness: concepts and application to bovine 
                  breeds. Renc. Rech. Ruminants., 13: 227-230. |  
                  |  |  
                  | 41. Ndiaye, N.P., Sow, A., Ndiaye, S., Sembène, M., Sawadogo 
                  G.J. (2014). Phenotypical Characterization of Senegalese Local 
                  Cattle Breeds Using Multivariate Analysis. J. Anim. Vet. Adv., 
                  13: 1150-1159. |  
                  |  |  
                  | 42. Gross, B.L. and Rieseberg, L.H. (2005). The ecological 
                  genetics of homoploid hybrid speciation. J. Hered., 96: 
                  241-252. http://dx.doi.org/10.1093/jhered/esi026
 PMid:15618301 PMCid:PMC2517139
 |  
                  |  |  
                  | 43. Bessa, I., Pinhero, I., Matola, M., Dzama, K., Rocha, A. 
                  and Alexandrino, P. (2009). Genetic diversity and 
                  relationships among indigenous Mozambican cattle breeds. S. 
                  Afr. J. Anim. Sci., 39: 61-72. |  
                  |  |  
                  | 44. Boichard, D., Maignel, L. and Verrier, E. (1997). The 
                  value of using probabilities of gene origin to measure genetic 
                  variability in a population. Genet. Sel. Evol., 19: 5-23. http://dx.doi.org/10.1186/1297-9686-29-1-5
 PMCid:PMC2708199
 |  
                  |  |  
                  | 45. De Meeûs, T. (2012). Initiation to the genetic of natural 
                  populations: Application to parasites and their vectors. 
                  Marseille: IRD Editions, Collection Didactiques, p 335. |  
                  |  |  
                  | 46. Sharma, R., Maitra, A., Singh, P.K, Tantia, M.S. (2013). 
                  Genetic diversity and relationship of cattle populations of 
                  East India: distinguishing lesser known cattle populations and 
                  established breeds based on STR markers. SpringerPlus, 2: 359. 
                  Available from: 
                  http://www.springerplus.com/content/2/1/359.Accessed on 
                  15-02-2015. |  |