| 
              
              
              Open Access  
Copyright: The authors. This article is an open access 
article licensed under the terms of the Creative Commons Attribution License 
 
 
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use, 
distribution and reproduction in any medium, provided the work is properly 
cited. 
 
              
              
              Research 
(Published online: 
10-02-2015) 
              
              
              4. Construction and characterization of 
              recombinant human adenovirus type 5 expressing foot-and-mouth 
              disease virus capsid proteins of Indian vaccine strain, O/IND/R2/75 
              - Ramesh Kumar, B. P. Sreenivasa and R. 
              P. Tamilselvan 
              Veterinary World, 8(2): 147-155   
              
   
                
                
doi: 
              10.14202/vetworld.2015.147-155 
                  Ramesh 
              Kumar: 
              
              FMD Research Centre, Indian Veterinary Research Institute, 
              Bangalore - 560 024, Karnataka, India; drrkvet13@gmail.com B. P. 
              Sreenivasa: 
              
              FMD Research Centre, Indian Veterinary Research Institute, 
              Bangalore - 560 024, Karnataka, India; bpsrini@gmail.com R. P. 
              Tamilselvan: FMD Research Centre, Indian Veterinary Research 
              Institute, Bangalore - 560 024, Karnataka, India;
              
              mukthitamil@gmail.com   
              Received: 20-10-2014, Revised: 18-12-2014, Accepted: 27-12-2014,
              Published online: 10-02-2015   
              
              
              Corresponding author:
              
              B. P. Sreenivasa, e-mail: bpsrini@gmail.com 
 
              Citation:
              Kumar R, 
              Sreenivasa BP, Tamilselvan RP (2015) Construction and 
              characterization of recombinant human adenovirus type 5 expressing 
              foot-and-mouth disease virus capsid proteins of Indian vaccine 
              strain, O/IND/R2/75, Veterinary World, 8(2): 
              147-155. 
 
              Abstract 
 Aim:
              Generation of recombinant human adenovirus type 5 expressing 
              foot-and-mouth disease virus (FMDV) capsid protein genes along 
              with full-length 2B, 3B and 3Cpro and its 
              characterization. 
              Materials and Methods: FMD viral RNA isolation, cDNA 
              synthesis, and polymerase chain reaction were performed to 
              synthesize expression cassettes (P1-2AB3BCwt 
              and P1-2AB3BCm) followed by cloning in 
              pShuttle-CMV vector. Chemically competent BJ5183-AD-1 cells were 
              transformed with the recombinant pShuttle-CMV to produce 
              recombinant adenoviral plasmids. HEK-293 cells were transfected 
              with the recombinant adenoviral plasmids to generate recombinant 
              adenoviruses (hAd5/P1-2AB3BCwt and 
              hAd5/P1-2AB3BCm). Expression of the target 
              proteins was analyzed by sandwich ELISA and indirect 
              immunofluorescence assay. The recombinant adenoviruses were 
              purified and concentrated by CsCl density gradient 
              ultracentrifugation. Growth kinetics and thermostability of the 
              recombinant adenoviruses were compared with that of 
              non-recombinant replication-defective adenovirus (dAd5). 
              Results: The recombinant adenoviruses containing capsid 
              protein genes of the FMDV O/IND/R2/75 were generated and amplified 
              in HEK-293 cells. The titer of the recombinant adenoviruses was 
              approximately 108, 109.5
              and 1011 TCID50/ml 
              in supernatant media, cell lysate and CsCl purified preparation, 
              respectively. Expression of the FMDV capsid protein was detectable 
              in sandwich ELISA and confirmed by immunofluorescence assay. 
              Growth kinetics of the recombinant adenoviruses did not reveal a 
              significant difference when compared with that of dAd5. A 
              decrement of up to 10-fold at 4°C and 21-fold at 37°C was recorded 
              in the virus titers during 60 h incubation period and found to be 
              statistically significant (p<0.01). 
              Conclusion: Recombinant adenoviruses expressing capsid 
              proteins of the FMDV O/IND/R2/75 were constructed and produced in 
              high titers. In vitro expression of the target proteins in 
              the adenovirus vector system was detected by sandwich ELISA and 
              immunofluorescence assay. 
              Keywords: foot-and-mouth disease, growth 
              kinetics, recombinant hAd5, thermostability, virus-like particles. 
 
              References 
 
                
                  | 1. Grubman, M.J. and Baxt, B. (2004) Foot- and- mouth disease. 
                  Clin. Microbiol. Rev., 17: 465-493. http://dx.doi.org/10.1128/CMR.17.2.465-493.2004
 PMid:15084510 PMCid:PMC387408
 |  
                  |  |  
                  | 2. Sobrino, F., Saiz, M., Jimmenez-Clavero, M.A., Nunez, J.I., 
                  Rosas, M.F., Baranowsky, E. and Ley, V. (2001) Foot- and- 
                  mouth disease virus: A long known virus, but a current threat. 
                  Vet. Res., 32(1): 1-30. http://dx.doi.org/10.1051/vetres:2001106
 PMid:11254174
 |  
                  |  |  
                  | 3. FAO. (2012) Foot- and- Mmouth Ddisease. OIE Manual of 
                  Diagnostic Tests and Vaccines for Terrestrial Animals. 6th ed 
                  Paris, FranceOIE Terrestrial Manual. ???, FAO(2012) Foot and 
                  Mouth Disease. |  
                  |  |  
                  | 4. Charleston, B., Bankowski, B., Gubbins, S., Chase-Topping, 
                  M.E., Schley, D., Howey, R., Barnett, P.V., Gibson, D., Juleff, 
                  N.D. and Woolhouse, M.E.J. (2011) Relationship between 
                  clinical symptoms and transmission of an infectious disease 
                  and the implications for control. Science., 332(6030): 
                  726-729. http://dx.doi.org/10.1126/science.1199884
 PMid:21551063
 |  
                  |  |  
                  | 5. Rueckert, R.R. (1996) Picornaviridae: The viruses and their 
                  replication. In: Fields, B.N., Knipe, D.M., Howley, P.H., 
                  Chanock, R.M., Melnick, J.L., Monath, T.P., Roizman, B. and 
                  Straus S.E. editors. Fields Virology. 3rd ed., Philadelphia, 
                  PA, Lippincott-Raven. p609-654. |  
                  |  |  
                  | 6. Pilipenko, E.V., Maslova, S.V., Sinyakov, A.N. and Agol, 
                  V.I. (1992a) Towards identification of cis-acting elements 
                  involved in the replication of enterovirus and rhinovirus 
                  RNAs: a proposal for the existence of tRNA-like terminal 
                  structures. Nucleic. Acids. Res., 20(7): 1739-1745. http://dx.doi.org/10.1093/nar/20.7.1739
 PMid:1315956 PMCid:PMC312265
 |  
                  |  |  
                  | 7. Anon (2010) Annual Report (2009-2010). Project Directorate 
                  on Foot and Mouth Disease. Mukteswar, India. |  
                  |  |  
                  | 8. Geale, D.W., Barnett, P.V., Clarke, G.W., Davis, J. and 
                  Kasar, T.R. (2013) A review of OIE country status recovery 
                  using vaccinate to live versus vaccinate to die foot- and- 
                  mouth disease response policies II: Waiting periods after 
                  emergency vaccination in FMD free countries. Transbound. 
                  Emerg. Dis., doi:10.1111/tbed.12165. http://dx.doi.org/10.1111/tbed.12165
 |  
                  |  |  
                  | 9. Jennings, G.T. and Bachmann, M.F. (2008) The coming of age 
                  of virus-like particle vaccines. Biol. Chem., 389(5): 521-536. http://dx.doi.org/10.1515/BC.2008.064
 PMid:18953718
 |  
                  |  |  
                  | 10. Plummer, E.M. and Manchester, M. (2011) Viral 
                  nanoparticles and virus-like particles: platforms for 
                  contemporary vaccine design. Wiley. Interdiscip. Rev. Nanomed. 
                  Nanobiotechnol., 3(2): 174-196. http://dx.doi.org/10.1002/wnan.119
 PMid:20872839
 |  
                  |  |  
                  | 11. Abrams, C.C., King, A.M, and Belsham, G.J. (1995) Assembly 
                  of foot- and- mouth disease virus empty capsids synthesized by 
                  a vaccinia virus expression system. J. Gen. Virol., 76: 
                  3089-3098. http://dx.doi.org/10.1099/0022-1317-76-12-3089
 PMid:8847514
 |  
                  |  |  
                  | 12. Mason, P.W., Chinsangaram, J., Moraes, M.P., Mayr, G.A. 
                  and Grubman, M.J. (2003) Engineering better vaccines for foot- 
                  and- mouth disease. Dev. Biol., 114: 79-88. |  
                  |  |  
                  | 13. Lewis, S.A., Morgan, D.O. and Grubman, M.J. (1991) 
                  Expression, processing, and assembly of foot- and- mouth 
                  disease virus capsid structures in heterologous systems: 
                  induction of a neutralizing antibody response in guinea pigs. 
                  J. Virol., 65(12): 6572-6580. PMid:1658362 PMCid:PMC250715
 |  
                  |  |  
                  | 14. Li, Z., Yi, Y., Yin, X., Zhang, Z. and Liu, J. (2008) 
                  Expression of foot-and-mouth disease virus capsid proteins in 
                  silkworm-baculovirus expression system and its utilization as 
                  a subunit vaccine. PloS One., 3(5): e2273. http://dx.doi.org/10.1371/journal.pone.0002273
 PMid:18509464 PMCid:PMC2386233
 |  
                  |  |  
                  | 15. Rweyemamu, M.M., Terry, G. and Pay, T.W. (1979) Stability 
                  and immunogenicity of empty particles of foot- and- mouth 
                  disease virus. Arch. Virol., 59(1-2): 69-79. http://dx.doi.org/10.1007/BF01317896
 PMid:218538
 |  
                  |  |  
                  | 16. Guo, C., Zhang, C., Zheng, H. and Huang, Y. (2013) 
                  Recombinant adenovirus expression of FMDV P1-2A and 3C protein 
                  and its immune response in mice. Res. Vet. Sci., 95(2): 
                  736-741. http://dx.doi.org/10.1016/j.rvsc.2013.05.001
 PMid:23722010
 |  
                  |  |  
                  | 17. Mayr, G.A., Chinsangaram, J. and Grubman, M.J. (1999) 
                  Development of replication-deficient adenovirus serotype 5 
                  containing the capsid and 3C protease coding regions of 
                  foot-and-mouth disease virus as a vaccine candidate. 
                  Virology., 263(2): 496-506. http://dx.doi.org/10.1006/viro.1999.9940
 PMid:10544121
 |  
                  |  |  
                  | 18. Kushnir, N., Streatfield, S. and Yusibov, V. (2012) 
                  Virus-like particles as a highly efficient vaccine platform: 
                  Diversity of targets and production systems and advances in 
                  clinical development. Vaccine., 31(1): 58-83. http://dx.doi.org/10.1016/j.vaccine.2012.10.083
 PMid:23142589
 |  
                  |  |  
                  | 19. Silva, A.C., Fernades, P., Sousa, M.F. and Alves, P.M. 
                  (2014) Scalable production of adenovirus vectors. Methods. 
                  Mol. Biol., 1089: 175-196. http://dx.doi.org/10.1007/978-1-62703-679-5_13
 PMid:24132486
 |  
                  |  |  
                  | 20. Wald, W.S. and Toth, K. (2014) Adenovirus vectors for gene 
                  therapy, vaccination and cancer gene therapy. Curr. Gene. 
                  Ther., 13(6): 421-433. http://dx.doi.org/10.2174/1566523213666131125095046
 |  
                  |  |  
                  | 21. Luo, J., Deng, Z.L., Luo, X., Tang, N., Song, W.X., Chen, 
                  J., Sharff, KA., Luu, HH., Haydon, RC., Kinzler, KW., 
                  Vogelstein, B., He, TC. (2007) A protocol for rapid generation 
                  of recombinant adenoviruses using the AdEasy system. Nat. 
                  Protoc., 2(5): 1236-1247. http://dx.doi.org/10.1038/nprot.2007.135
 PMid:17546019
 |  
                  |  |  
                  | 22. Deal, C., Pekosz, A. and Ketner, G. (2013) Prospects for 
                  oral replicating adenovirus-vectored vaccines. Vaccine, 
                  31(32): 3236-3243. http://dx.doi.org/10.1016/j.vaccine.2013.05.016
 PMid:23707160 PMCid:PMC3750733
 |  
                  |  |  
                  | 23. Odondo, B.O. (2014) The influence of delivery vectors on 
                  HIV vaccine efficacy. Front. Microbiol., 5: 439. |  
                  |  |  
                  | 24. Brake, D.A., McIlhaney, M., Miller, T., Christianson, K., 
                  Keene, A., Lohnas, G., Purcell, C., Neilan, J., Schutta, C., 
                  Barrera, J., Burrage, T., Brough, DE. and Butman, BT. (2012) 
                  Human adenovirus vectored foot- and- mouth disease vaccines: 
                  establishment of a vaccine product profile through in vitro 
                  testing. Dev. Biol., 134: 123-133. |  
                  |  |  
                  | 25. Romanutti, C., D'Antuono, A., Palacios, C., Quattrocchi, 
                  V., Zamorano, P., La Torre, J. and, Mattion, N. (2013) 
                  Evaluation of the immune response elicited by vaccination with 
                  viral vectors encoding FMDV capsid proteins and boosted with 
                  inactivated virus. Vet. Microbiol., 165(3-4): 333-340. http://dx.doi.org/10.1016/j.vetmic.2013.04.017
 PMid:23683999
 |  
                  |  |  
                  | 26. Lu, Z., Bao, H., Cao, Y., Sun, P., Guo, J., Li, P., Bai, 
                  X., Chen, Y., Xie, B., Li, D., Liu, Z., and Xie, Q. (2008) 
                  Protection of guinea pigs and swine by a recombinant 
                  adenovirus expressing O serotype of foot- and- mouth disease 
                  virus whole capsid and 3C protease. Vaccine, 26 (Suppl 6): 
                  G48-53. http://dx.doi.org/10.1016/j.vaccine.2008.09.066
 PMid:19178894
 |  
                  |  |  
                  | 27. Pacheco, J.M., Brum, M.C., Moraes, M.P., Golde, W.T. and 
                  Grubman, M.J. (2005) Rapid protection of cattle from direct 
                  challenge with foot- and- mouth disease virus (FMDV) by a 
                  single inoculation with an adenovirus-vectored FMDV subunit 
                  vaccine. Virology., 337(2): 205-209. http://dx.doi.org/10.1016/j.virol.2005.04.014
 PMid:15893355
 |  
                  |  |  
                  | 28. Pena, L., Moraes, M.P., Koster, M., Burrage, T., Pacheco, 
                  J.M., Segundo, F.D. and Grubman, M.J. (2008) Delivery of a 
                  foot- and- mouth disease virus empty capsid subunit antigen 
                  with nonstructural protein 2B improves protection of swine. 
                  Vaccine, 26(45): 5689-5699. http://dx.doi.org/10.1016/j.vaccine.2008.08.022
 PMid:18762225
 |  
                  |  |  
                  | 29. Moraes, M.P., Segundo, F.D., Dias, C.C., Pena, L. and 
                  Grubman, M.J. (2011) Increased efficacy of an 
                  adenovirus-vectored foot-and-mouth disease capsid subunit 
                  vaccine expressing nonstructural protein 2B is associated with 
                  a specific T cell response. Vaccine, 29(51): 9431-9440. http://dx.doi.org/10.1016/j.vaccine.2011.10.037
 PMid:22027486
 |  
                  |  |  
                  | 30. Sambrook J. and Russel D.W. (2001) Molecular Cloning: A 
                  Laboratory Manual. 3rd ed. New York, Cold Spring Harbor. 
                  p1.-117. |  
                  |  |  
                  | 31. Reed, L.J. and Muench, H. (1938) A simple method for 
                  estimation of fifty percent end point. Am. J. Hyg., 27(3): 
                  493-497. |  
                  |  |  
                  | 32. Golde, W.T., Pacheco, J.M., Duque, H., Doel, T., Penfold, 
                  B., Ferman, G.S., Gregg, D.R. and Rodriguez, L.L. (2005) 
                  Vaccination against foot- and- mouth disease virus confers 
                  complete clinical protection in 7 days and partial protection 
                  in 4 days: Use in emergency outbreak response. Vaccine., 
                  23(50): 5775-5782. http://dx.doi.org/10.1016/j.vaccine.2005.07.043
 PMid:16153756
 |  
                  |  |  
                  | 33. Sanz-Parra, A., Jimenez-Clavero, M.A., Garcia-Briones, 
                  M.M., Blanco, E., Sobrino, F. and Ley, V. (1999) Recombinant 
                  viruses expressing the foot- and- mouth disease virus capsid 
                  precursor polypeptide (P1) induce cellular but not humoral 
                  antiviral immunity and partial protection in pigs. Virology., 
                  259(1): 129-134. http://dx.doi.org/10.1006/viro.1999.9717
 PMid:10364496
 |  
                  |  |  
                  | 34. Korrapati, A.B., Swaminathan, G., Singh, A., Khanna, N. 
                  and Swaminathan, S. (2012) Adenovirus delivered short hairpin 
                  RNA targeting a conserved site in the 5' non-translated region 
                  inhibits all four serotypes of dengue viruses. PLoS. Negl. 
                  Trop. Dis., 6(7): e1735. |  
                  |  |  
                  | 35. Barouch, D.H. and Picker, L.J. (2014) Novel vaccine 
                  vectors for HIV-1. Nat. Rev. Microbiol., 12(11): 765-771. doi: 
                  10.1038/nrmicro3360. http://dx.doi.org/10.1038/nrmicro3360
 |  
                  |  |  
                  | 36. Bette, A., Prevec, L. and Graham, F. (1993) Packaging 
                  capacity and stability of human adenovirus type 5 vectors. J. 
                  Virol., 67(10): 5911-5921. |  
                  |  |  
                  | 37. Saha, B., Wong, C.M. and Parks, R.J. (2014) The Adenovirus 
                  genome contributes to the structural stability of the virion. 
                  Viruses, 6(9): 3563-3583. http://dx.doi.org/10.3390/v6093563
 PMid:25254384 PMCid:PMC4189039
 |  
                  |  |  
                  | 38. Porta, C., Xu, X., Loureiro, S., Paramasivam, S., Ren, J., 
                  Al-Khalil, T., Burman, A., Jackson, T., Belsham, GJ., Curry, 
                  S., Lomonossoff, GP., Parida, S., Paton, D., Li, Y., Wilsden, 
                  G., Ferris, N., Owens, R., Kotecha, A., Fry, E., Stuart, DI., 
                  Charleston, B. and Jones, IM. (2013) Efficient production of 
                  foot-and-mouth disease virus empty capsids in insect cells 
                  following down regulation of 3C protease activity. J. Virol. 
                  Methods., 187(2): 406-412. http://dx.doi.org/10.1016/j.jviromet.2012.11.011
 PMid:23174161 PMCid:PMC3558679
 |  
                  |  |  
                  | 39. Torres, J.M., Alonso, C., Ortega, A., Mittal, S., Graham, 
                  F. and Enjuanes, L. (1996) Tropism of human adenovirus type 
                  5-based vectors in swine and their ability to protect against 
                  transmissible gastroenteritis coronavirus. J. Virol., 70(6): 
                  3770-3780. PMid:8648712 PMCid:PMC190253
 |  
                  |  |  
                  | 40. Xue, C., Tian, X., Li, X., Zhou, Z., Su, X. and Zhou, R. 
                  (2014) Construction and characterization of a recombinant 
                  adenovirus type 3 vector containing two foreign neutralizing 
                  epitopes in hexon. Virus. Res., 183: 67-74. http://dx.doi.org/10.1016/j.virusres.2014.01.027
 PMid:24518297
 |  
                  |  |  
                  | 41. Hehir, K.M., Armentano, D., Cardoza, L.M., Choquette, 
                  T.L., Berthelette, P.B., White, G.A., Couture, L.A., Everton, 
                  M.B., Keegan, J., Martin, J.M., Pratt, D.A., Smith, M.P., 
                  Smith, A.E., Wadsworth, S.C. (1996) Molecular characterization 
                  of replication-competent variants of adenovirus vectors and 
                  genome modifications to prevent their occurrence. J. Virol., 
                  70(12): 8459-8467. PMid:8970968 PMCid:PMC190936
 |  
                  |  |  
                  | 42. Liu, J., Nian, QG., Zhang, Y., Xu, LJ., Hu, Y., Li, J., 
                  Deng, YQ., Zhu, SY., Wu, XY., Qin, ED., Jiang, T. and, Qin, 
                  CF. (2014) In vitro characterization of human adenovirus type 
                  55 in comparison with its parental adenoviruses, types 11 and 
                  14. PLoS One, 9(6): e100665. http://dx.doi.org/10.1371/journal.pone.0100665
 PMid:24956280 PMCid:PMC4067339
 |  |