| 
              
              
              Open Access  
Copyright: The authors. This article is an open access 
article licensed under the terms of the Creative Commons Attribution License 
 
 
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use, 
distribution and reproduction in any medium, provided the work is properly 
cited. 
 
              
              
              Research 
(Published online:  
13-02-2015) 
              7. 
              Isolation and in vitro selection of actinomycetes strains 
              as potential probiotics for aquaculture 
              -  Milagro García Bernal, Ángel 
              Isidro Campa-Córdova, Pedro Enrique Saucedo, Marlen Casanova 
              González, Ricardo Medina Marrero and José Manuel Mazón-Suástegui 
              Veterinary World, 8(2): 170-176   
              
   
                
                
doi: 
              10.14202/vetworld.2015.170-176 
              Milagro García Bernal: Department of 
              Microbiology, Center for the Study of Bioactive Chemicals (CBQ), 
              Central University "Marta Abreu" of Las Villas. Road to Camajuaní 
              Km 5½. Santa Clara 54830. Villa Clara. Cuba.; 
              mrgarcia@uclv.edu.cu 
              Ángel Isidro Campa-Córdova: Centro de 
              Investigaciones Biológicas del Noroeste (CIBNOR), Instituto 
              Politécnico Nacional No. 195, Col. Playa Palo de Santa Rita Sur, 
              C.P. 23090. La Paz, Baja California Sur, México; 
              angcamp04@cibnor.mx 
              Pedro Enrique Saucedo:
              Centro de Investigaciones 
              Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 
              No. 195, Col. Playa Palo de Santa Rita Sur, C.P. 23090. La Paz, 
              Baja California Sur, México; 
              psaucedo04@cibnor.mx 
              Marlen Casanova González: Department 
              of Microbiology, Center for the Study of Bioactive Chemicals (CBQ), 
              Central University "Marta Abreu" of Las Villas. Road to Camajuaní 
              Km 5½. Santa Clara 54830. Villa Clara. Cuba.; 
              marlencg@uclv.edu.cu 
              Ricardo Medina Marrero: Department of 
              Microbiology, Center for the Study of Bioactive Chemicals (CBQ), 
              Central University "Marta Abreu" of Las Villas. Road to Camajuaní 
              Km 5½. Santa Clara 54830. Villa Clara. Cuba.; 
              rpmedina@uclv.edu.cu 
              José Manuel Mazón-Suástegui: Centro de 
              Investigaciones Biológicas del Noroeste (CIBNOR), Instituto 
              Politécnico Nacional No. 195, Col. Playa Palo de Santa Rita Sur, 
              C.P. 23090. La Paz, Baja California Sur, México; 
              jmazon04@cibnor.mx   
              Received: 01-10-2014, 
              
              Revised: 
              
              25-12-2014, Accepted:
              
              
              03-01-2015, 
              
              Published online: 13-02-2015   
              
              
              Corresponding author:
              José Manuel 
              Mazón-Suástegui, email: jmazon04@cibnor.mx 
 
              Citation:
              Garcia-Bernal 
              M, Campa-Córdova AI, Saucedo PE, Casanova-Gonzalez M, 
              Medina-Marrero R, Mazón-Suástegui JM (2015) Isolation and in vitro 
              selection of actinomycetes strains as potential probiotics for 
              aquaculture, Veterinary World 8(2);170-176. 
 
              Abstract 
 
              Aim: This study was designed to describe a 
              series of in vitro tests that may aid the discovery of 
              probiotic strains from actinomycetes.  
              Materials and Methods: Actinomycetes were isolated from marine 
              sediments using four different isolation media, followed by 
              antimicrobial activity and toxicity assessment by the agar 
              diffusion method and the hemolysis of human blood cells, 
              respectively. Extracellular enzymatic production was monitored by 
              the hydrolysis of proteins, lipids and carbohydrates. Tolerance to 
              different pH values and salt concentrations was also determined, 
              followed by hydrophobicity analysis and genetic identification of 
              the most promising strains.  
              Results: Five out of 31 isolated strains showed antimicrobial 
              activity against three Vibrio species. Three non-hemolytic 
              strains (N7, RL8 and V4) among these active isolates yielded 
              positive results in hydrophobicity tests and exhibited good growth 
              at salt concentrations ranging from 0% to 10%, except strain RL8, 
              which required a salt concentration >0.6%. Although these strains 
              did not grow at pH<3, they showed different enzymatic activities. 
              Phylogenetic analysis revealed that strains N7 and V4 have more 
              than 99% identity with several Streptomyces species, 
              whereas the closest matches to strain RL8 are Streptomyces 
              panacagri and Streptomyces flocculus, with 98% and 
              98.2% similarity, respectively.  
              Conclusion: Three actinomycetes strains showing probiotic-like 
              properties were discovered using several in vitro tests 
              that can be easily implemented in different institutions around 
              the world.  
              Keywords: aquaculture, marine actinomycetes, probiotics, 
              Vibrio.  
 
              References 
 
                
                  | 1. Bostock, J., McAndrew, B., Richards, R., Jauncey, K., 
                  Telfer, T., Lorenzen, K., Little, D., Ross, L., Handisyde, N., 
                  Gatward, I. and Corner, R. (2010) Aquaculture: Global status 
                  and trends. Philos. Trans. R. Soc. Lond B. Biol. Sci., 
                  365(1554): 2897-2912. http://dx.doi.org/10.1098/rstb.2010.0170
 PMid:20713392 PMCid:PMC2935128
 |  
                  |  |  
                  | 2. Balcázar, J.L., Blas, I.D., Ruiz-Zarzuela, I., Cunningham, 
                  D., Vendrell, D. and Múzquiz, J.L. (2006) The role of 
                  probiotics in aquaculture. Vet. Microbiol., 114(3-4): 173-186. http://dx.doi.org/10.1016/j.vetmic.2006.01.009
 PMid:16490324
 |  
                  |  |  
                  | 3. Rollo, A., Sulpizio, R., Nardi, M., Silvi, S., Orpianesi, 
                  C., Caggiano, M., Cresci, A. and Carnevali, O. (2006) Live 
                  microbial feed supplement in aquaculture for improvement of 
                  stress tolerance. Fish Physiol. Biochem., 32: 167-177. http://dx.doi.org/10.1007/s10695-006-0009-2
 |  
                  |  |  
                  | 4. Beaz-Hidalgo, R., Balboa, S., Romalde, J.L. and Figueras, 
                  M.J. (2010) Diversity and pathogenecity of Vibrio species in 
                  cultured bivalve molluscs. Environ. Microbiol. Rep., 2: 34-43. http://dx.doi.org/10.1111/j.1758-2229.2010.00135.x
 PMid:23765996
 |  
                  |  |  
                  | 5. Paillard, C., Le Roux, F. and Borrego, J.J. (2004) 
                  Bacterial disease in marine bivalves, a review of recent 
                  studies: Trends and evolution. Aquat. Living Resour., 17: 
                  477-498. http://dx.doi.org/10.1051/alr:2004054
 |  
                  |  |  
                  | 6. Pruzzo, C., Gallo, G. and Canesi, L. (2005) Persistence of 
                  vibrios in marine bivalves: the role of interactions with 
                  haemolymph components. Environ. Microbiol., 7(6): 761-772. http://dx.doi.org/10.1111/j.1462-2920.2005.00792.x
 PMid:15892695
 |  
                  |  |  
                  | 7. Cabello, F.C., Godfrey, H.P., Tomova, A., Ivanova, L., 
                  Dolz, H., Millanao, A. and Buschmann, A.H. (2013) 
                  Antimicrobial use in aquaculture re-examined: its relevance to 
                  antimicrobial resistance and to animal and human health. 
                  Environ. Microbiol., 15(7): 1917-1942. http://dx.doi.org/10.1111/1462-2920.12134
 PMid:23711078
 |  
                  |  |  
                  | 8. Labella, A., Gennari, M., Ghidini, V., Trento, I., Manfrin, 
                  A., Borrego, J.J. and Lleo, M.M. (2013) High incidence of 
                  antibiotic multi-resistant bacteria in coastal areas dedicated 
                  to fish farming. Mar. Pollut. Bull., 70(1-2): 197-203. http://dx.doi.org/10.1016/j.marpolbul.2013.02.037
 PMid:23518445
 |  
                  |  |  
                  | 9. Perry, J.A. and Wright, G.D. (2013) The antibiotic 
                  resistance "mobilome": searching for the link between 
                  environment and clinic. Front. Microbiol., 4: 138. http://dx.doi.org/10.3389/fmicb.2013.00138
 PMid:23755047 PMCid:PMC3667243
 |  
                  |  |  
                  | 10. Rolain, J.M. (2013) Food and human gut as reservoirs of 
                  transferable antibiotic resistance encoding genes. Front. 
                  Microbiol., 4: 173. http://dx.doi.org/10.3389/fmicb.2013.00173
 PMid:23805136 PMCid:PMC3690338
 |  
                  |  |  
                  | 11. Campa-Córdova, A.I., Luna-González, A., Mazón-Suástegui, 
                  J.M., Aguirre-Guzmán, G., Ascencio, F. and González-Ocampo, 
                  H.A. (2011) Effect of probiotic bacteria on survival and 
                  growth of Cortez oyster larvae, Crassostrea corteziensis 
                  (Bivalvia: Ostreidae). Rev. Biol. Trop., 59(1): 183-191. PMid:21516645
 |  
                  |  |  
                  | 12. Kesarcodi-Watson, A., Kaspar, H., Lategan, M.J. and 
                  Gibson, L. (2008) Probiotics in aquaculture: The need, 
                  principles and mechanisms of action and screening processes. 
                  Aquaculture, 274: 1-14. http://dx.doi.org/10.1016/j.aquaculture.2007.11.019
 |  
                  |  |  
                  | 13. Luis-Villase-or, I.E., Campa-Córdova, A.I., Huerta-Aldáz, 
                  N., Luna-González, A., Mazón-Suástegui, J.M. and 
                  Flores-Higuera, F. (2013) Effect of beneficial bacteria in 
                  larval culture of Pacific white leg shrimp, Litopenaeus 
                  vannamei. Afr. J. Microbiol. Res., 7: 3471-3478. |  
                  |  |  
                  | 14. Dharmaraj, S. (2011) Antagonistic potential of marine 
                  actinobacteria against fish and shellfish pathogens. Turk. J. 
                  Biol., 35: 303-311. |  
                  |  |  
                  | 15. Dharmaraj, S. and Kandasamy, D. (2010) Evaluation of 
                  Streptomyces as probiotic feed for growth of ornamental fish 
                  Xiphophorus helleri. Food Technol. Biotechnol., 48: 497-504. |  
                  |  |  
                  | 16. Das, S., Ward, L.R. and Burke, C. (2010) Screening of 
                  marine Streptomyces spp. for potential use as probiotics in 
                  aquaculture. Aquaculture, 305: 32-41. http://dx.doi.org/10.1016/j.aquaculture.2010.04.001
 |  
                  |  |  
                  | 17. Tuong, N.T.C., Nguyen Xuan, H., Le Thi Nam, T., Masaru, M. 
                  and Ikuo, M. (2011) Identification and characterization of 
                  actinomycetes antagonistic to pathogenic Vibrio spp. isolated 
                  from shrimp culture pond sediments in Thua Thien Hue–Viet Nam. 
                  J. Fac. Agric Kyushu Univ., 56: 15-20. |  
                  |  |  
                  | 18. You, J.L., Cao, L.X., Liu, G.F., Zhou, S.N., Tan, H.M. and 
                  Lin, Y.C. (2005) Isolation and characterization of 
                  actinomycetes antagonistic to pathogenic Vibrio spp. from near 
                  shore marine sediments. World J. Microbial. Biotechnol., 21: 
                  679-682. http://dx.doi.org/10.1007/s11274-004-3851-3
 |  
                  |  |  
                  | 19. Pisano, M., Sommer, M. and Lopez, M. (1986) Application of 
                  pretreatments for the isolation of bioactive actinomycetes 
                  from marine sediments. Appl. Microbiol. Biotechnol., 25: 
                  285-288. http://dx.doi.org/10.1007/BF00253664
 |  
                  |  |  
                  | 20. Jensen, P.R., Gontang, E., Mafnas, C., Mincer, T.J. and 
                  Fenical, W. (2005) Culturable marine actinomycete diversity 
                  from tropical Pacific Ocean sediments. Environ. Microbiol., 
                  7(7): 1039-1048. http://dx.doi.org/10.1111/j.1462-2920.2005.00785.x
 PMid:15946301
 |  
                  |  |  
                  | 21. Gonzalez, I., Ayuso-Sacido, A., Anderson, A. and 
                  Genilloud, O. (2005) Actinomycetes isolated from lichens: 
                  Evaluation of their diversity and detection of biosynthetic 
                  gene sequences. FEMS Microbiol. Ecol., 54(3): 401-415. http://dx.doi.org/10.1016/j.femsec.2005.05.004
 PMid:16332338
 |  
                  |  |  
                  | 22. Cowan, S.T. (1993) In: Barrow, G.I. and Feltham, R.K.A. 
                  editors. Cowan and Steel's Manual for the Identification of 
                  Medical Bacteria. University Press, Cambridge. p317. |  
                  |  |  
                  | 23. Berkhoff, H.A. and Vinal, A.C. (1986) Congo red medium to 
                  distinguish between invasive and non-invasive Escherichia coli 
                  pathogenic for poultry. Avian Dis., 30(1): 117-121. http://dx.doi.org/10.2307/1590621
 PMid:3524540
 |  
                  |  |  
                  | 24. Sweet, S.P., MacFarlane, T.W. and Samaranayake, L.P. 
                  (1987) Determination of the cell surface hydrophobicity of 
                  oral bacteria using a modified hydrocarbon adherence method. 
                  FEMS Microbiol. Lett., 48: 159-163. http://dx.doi.org/10.1111/j.1574-6968.1987.tb02534.x
 |  
                  |  |  
                  | 25. Mattos-Guaraldi, A.L., Formiga, L.C. and Andrade, A.F. 
                  (1999) Cell surface hydrophobicity of sucrose fermenting and 
                  nonfermenting Corynebacterium diphtheria strains evaluated by 
                  different methods. Curr. Microbiol., 38(1): 37-42. http://dx.doi.org/10.1007/PL00006769
 PMid:9841780
 |  
                  |  |  
                  | 26. Tresner, H.D., Hayes, J.A. and Backus, E.J. (1968) 
                  Differential tolerance of streptomycetes to sodium chloride as 
                  a taxonomic aid. Appl. Microbiol., 16(8): 1134-1136. PMid:5675504 PMCid:PMC547607
 |  
                  |  |  
                  | 27. León, J., Pellón, F., Unda, V., David, J., Anaya, C. and 
                  Mendoza, V. (2000) Producción de enzimas extracelulares por 
                  bacterias aisladas de invertebrados marinos. Rev. Peru. Biol., 
                  7: 202-210. |  
                  |  |  
                  | 28. Harley, J.P. and Prescott L.M. (2002) Laboratory Exercises 
                  in Microbiology. 5th ed. The McGraw-Hill Companies, New York. |  
                  |  |  
                  | 29. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and 
                  Lipman D.J. (1990) Basic local alignment search tool. J. Mol. 
                  Biol., 215(3): 403-410. http://dx.doi.org/10.1016/S0022-2836(05)80360-2
 |  
                  |  |  
                  | 30. Cole, J.R., Chai, B., Farris, R.J., Wang, Q., Kulam, S.A., 
                  McGarrell, D.M., Garrity, G.M. and Tiedje, J.M. (2005) The 
                  Ribosomal Database Project (RDP-II): Sequences and tools for 
                  high-throughput rRNA analysis. Nucl. Acids Res., 33: D294-296. http://dx.doi.org/10.1093/nar/gki038
 PMid:15608200 PMCid:PMC539992
 |  
                  |  |  
                  | 31. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and 
                  Kumar, S. (2013) MEGA6: Molecular evolutionary genetics 
                  analysis version 6.0. Mol. Biol. Evol., 30, 2725-2729. http://dx.doi.org/10.1093/molbev/mst197
 PMid:24132122 PMCid:PMC3840312
 |  
                  |  |  
                  | 32. Saitou, N. and Nei, M. (1987) The neighbor-joining method: 
                  A new method for reconstructing phylogenetic trees. Mol. Biol. 
                  Evol., 4(4): 406-425. PMid:3447015
 |  
                  |  |  
                  | 33. Kimura, M. (1980) A simple method for estimating 
                  evolutionary rates of base substitutions through comparative 
                  studies of nucleotide sequences. J. Mol. Evol., 16(2): 
                  111-120. http://dx.doi.org/10.1007/BF01731581
 PMid:7463489
 |  
                  |  |  
                  | 34. Kwon, H.C., Kauffman, C.A., Jensen, P.R. and Fenical, W. 
                  (2006) Marinomycins A-D, antitumor-antibiotics of a new 
                  structure class from a marine actinomycete of the recently 
                  discovered genus "marinispora". J. Am. Chem. Soc., 128(5): 
                  1622-1632. http://dx.doi.org/10.1021/ja0558948
 PMid:16448135
 |  
                  |  |  
                  | 35. Mincer, T.J., Fenical, W. and Jensen, P.R. (2005) 
                  Culture-dependent and culture-independent diversity within the 
                  obligate marine actinomycete genus Salinispora. Appl. Environ. 
                  Microbiol., 71(11): 7019-7028. http://dx.doi.org/10.1128/AEM.71.11.7019-7028.2005
 PMid:16269737 PMCid:PMC1287694
 |  
                  |  |  
                  | 36. Hawas, U.W., Shaaban, M., Shaaban, K.A., Speitling, M., 
                  Maier, A., Kelter, G., Fiebig, H.H., Meiners, M., Helmke, E. 
                  and Laatsch, H. (2009) Mansouramycins A-D, cytotoxic 
                  isoquinoline quinones from a marine streptomycete. J. Nat. 
                  Prod., 72: 2120-2124. http://dx.doi.org/10.1021/np900160g
 PMid:19921834
 |  
                  |  |  
                  | 37. Heindl, H., Thiel, V., Wiese, J. and Imhoff, J.F. (2012) 
                  Bacterial isolates from the bryozoan Membranipora membranacea: 
                  Influence of culture media on isolation and antimicrobial 
                  activity. Int. Microbiol., 15(1): 17-32. PMid:22837149
 |  
                  |  |  
                  | 38. Hodges, T.W., Slattery, M. and Olson, J.B. (2012) Unique 
                  actinomycetes from marine caves and coral reef sediments 
                  provide novel PKS and NRPS biosynthetic gene clusters. Mar. 
                  Biotechnol. (NY), 14(3): 270-280. http://dx.doi.org/10.1007/s10126-011-9410-7
 PMid:22002467
 |  
                  |  |  
                  | 39. Nithyanand P. and Pandian S.K. (2009) Phylogenetic 
                  characterization of culturable bacterial diversity associated 
                  with the mucus and tissue of the coral Acropora digitifera 
                  from the Gulf of Mannar. FEMS Microbiol. Ecol., 69(3): 
                  384-394. http://dx.doi.org/10.1111/j.1574-6941.2009.00723.x
 PMid:19619231
 |  
                  |  |  
                  | 40. Schneemann, I., Nagel, K., Kajahn, I., Labes, A., Wiese, 
                  J. and Imhoff, J.F. (2010) Comprehensive investigation of 
                  marine actinobacteria associated with the sponge Halichondria 
                  panicea. Appl. Environ. Microbiol., 76(11): 3702-3714. http://dx.doi.org/10.1128/AEM.00780-10
 PMid:20382810 PMCid:PMC2876447
 |  
                  |  |  
                  | 41. Sun, P., Maloney, K.N., Nam, S.J., Haste, N.M., Raju, R., 
                  Aalbersberg, W., Jensen, P.R., Nizet, V., Hensler, M.E. and 
                  Fenical, W. (2011) Fijimycins A-C, three antibacterial 
                  etamycin-class depsipeptides from a marine-derived 
                  Streptomyces sp. Bioorgan. Med. Chem., 19(22): 6557-6562. http://dx.doi.org/10.1016/j.bmc.2011.06.053
 PMid:21745747 PMCid:PMC3205191
 |  
                  |  |  
                  | 42. Sun, W., Peng, C., Zhao, Y. and Li, Z. (2012) Functional 
                  gene-guided discovery of type II polyketides from culturable 
                  actinomycetes associated with soft coral Scleronephthya sp. 
                  PLoS One, 7(8): e42847. http://dx.doi.org/10.1371/journal.pone.0042847
 PMid:22880121 PMCid:PMC3413676
 |  
                  |  |  
                  | 43. Xi, L., Ruan J. and Huang, Y. (2012) Diversity and 
                  biosynthetic potential of culturable actinomycetes associated 
                  with marine sponges in the china seas. Int. J. Mol. Sci., 
                  13(5): 5917-5932. http://dx.doi.org/10.3390/ijms13055917
 PMid:22754340 PMCid:PMC3382808
 |  
                  |  |  
                  | 44. Sanchez, L.M., Wong, W.R., Riener, R.M., Schulze, C.J. and 
                  Linington, R.G. (2012) Examining the fish microbiome: 
                  Vertebrate-derived bacteria as an environmental niche for the 
                  discovery of unique marine natural products. PLoS One, 7(5): 
                  e35398. http://dx.doi.org/10.1371/journal.pone.0035398
 PMid:22574119 PMCid:PMC3344833
 |  
                  |  |  
                  | 45. Sheeja, M.S., Selvakumar, D. and Dhevendaran, K. (2011) 
                  Antagonistic potential of Streptomyces associated with the gut 
                  of marine ornamental fishes. Middle East J. Sci. Res., 7: 
                  327-334. |  
                  |  |  
                  | 46. Wu, S., Wang, G., Angert, E.R., Wang, W., Li, W. and Zou, 
                  H. (2012) Composition, diversity, and origin of the bacterial 
                  community in grass carp intestine. PLoS One, 7(2): e30440. http://dx.doi.org/10.1371/journal.pone.0030440
 PMid:22363439 PMCid:PMC3282688
 |  
                  |  |  
                  | 47. Zheng, Z, Zeng, W, Huang, Y, Yang, Z, Li, J, Cai, H and 
                  Su, W (2000) Detection of antitumor and antimicrobial 
                  activities in marine organism associated actinomycetes 
                  isolated from the Taiwan Strait, China. FEMS Microbiol. Lett., 
                  188(1): 87-91. http://dx.doi.org/10.1111/j.1574-6968.2000.tb09173.x
 PMid:10867239
 |  
                  |  |  
                  | 48. Arafah, S., Kicka, S., Trofimov, V., Hagedorn, M., Andreu, 
                  N., Wiles, S., Robertson, B. and Soldati, T. (2013) Setting up 
                  and monitoring an infection of dictyosteliumdiscoideum with 
                  mycobacteria. In: Eichinger, L. and Rivero, F. editors. 
                  Dictyostelium Discoideum Protocols, Humana Press, New York. 
                  p403-417. http://dx.doi.org/10.1007/978-1-62703-302-2_22
 PMid:23494320
 |  
                  |  |  
                  | 49. Wang, G.L., Yuan, S.P. and Jin, S. (2005) Nocardiosis in 
                  large yellow croaker, Larimichthys crocea (Richardson). J. 
                  Fish Dis., 28(6): 339-345. http://dx.doi.org/10.1111/j.1365-2761.2005.00637.x
 PMid:15960657
 |  
                  |  |  
                  | 50. Bermudez-Brito, M., Plaza-Diaz, J., Munoz-Quezada, S., 
                  Gomez-Llorente, C. and Gil, A. (2012) Probiotic mechanisms of 
                  action. Ann. Nutr. Metab., 61: 160-174. http://dx.doi.org/10.1159/000342079
 PMid:23037511
 |  
                  |  |  
                  | 51. Bezkorovainy, A. (2001) Probiotics: Determinants of 
                  survival and growth in the gut. Am. J. Clin. Nutr., 73: 
                  399S-405S. PMid:11157348
 |  
                  |  |  
                  | 52. Jensen, P.R., Mincer, T.J., Williams, P.G. and Fenical, W. 
                  (2005) Marine actinomycete diversity and natural product 
                  discovery. Antonie van Leeuwenhoek, 87(1): 43-48. http://dx.doi.org/10.1007/s10482-004-6540-1
 PMid:15726290
 |  
                  |  |  
                  | 53. Chater, K.F., Biro, S., Lee, K.J., Palmer, T. and 
                  Schrempf, H. (2010) The complex extracellular biology of 
                  Streptomyces. FEMS Microbiol. Rev., 34(2): 171-198. http://dx.doi.org/10.1111/j.1574-6976.2009.00206.x
 PMid:20088961
 |  
                  |  |  
                  | 54. Prakash, D., Nawani, N., Prakash, M., Bodas, M., Mandal, 
                  A., Khetmalas, M., Kapadnis, B. (2013) Actinomycetes: A 
                  repertory of green catalysts with a potential revenue 
                  resource. Biomed. Res. Int., 2013: 264020. http://dx.doi.org/10.1155/2013/264020
 PMid:23691495 PMCid:PMC3652136
 |  
                  |  |  
                  | 55. Das, S., Ward, L.R., Burke, C. and Moriarty, D.J.W. (2008) 
                  Prospects of using marine actinobacteria as probiotics in 
                  aquaculture. Appl. Microbiol. Biot., 81(3): 419-429. http://dx.doi.org/10.1007/s00253-008-1731-8
 PMid:18841358
 |  
                  |  |  
                  | 56. Berdy, J. (2005) Bioactive microbial metabolites. J. 
                  Antibiot. (Tokyo), 58: 1-26. http://dx.doi.org/10.1038/ja.2005.1
 PMid:15813176
 |  |