Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

ISSN (Print): 0972-8988


Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ

Open Access

Copyright: The authors. This article is an open access article licensed under the terms of the Creative Commons Attribution License

( which permits unrestricted use, distribution and reproduction in any medium, provided the work is properly cited.

Research (Published online: 13-02-2015)

7. Isolation and in vitro selection of actinomycetes strains as potential probiotics for aquaculture - Milagro García Bernal, Ángel Isidro Campa-Córdova, Pedro Enrique Saucedo, Marlen Casanova González, Ricardo Medina Marrero and José Manuel Mazón-Suástegui

Veterinary World, 8(2): 170-176



   doi: 10.14202/vetworld.2015.170-176

Milagro García Bernal: Department of Microbiology, Center for the Study of Bioactive Chemicals (CBQ), Central University "Marta Abreu" of Las Villas. Road to Camajuaní Km 5½. Santa Clara 54830. Villa Clara. Cuba.;

Ángel Isidro Campa-Córdova: Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional No. 195, Col. Playa Palo de Santa Rita Sur, C.P. 23090. La Paz, Baja California Sur, México;

Pedro Enrique Saucedo: Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional No. 195, Col. Playa Palo de Santa Rita Sur, C.P. 23090. La Paz, Baja California Sur, México;

Marlen Casanova González: Department of Microbiology, Center for the Study of Bioactive Chemicals (CBQ), Central University "Marta Abreu" of Las Villas. Road to Camajuaní Km 5½. Santa Clara 54830. Villa Clara. Cuba.;

Ricardo Medina Marrero: Department of Microbiology, Center for the Study of Bioactive Chemicals (CBQ), Central University "Marta Abreu" of Las Villas. Road to Camajuaní Km 5½. Santa Clara 54830. Villa Clara. Cuba.;

José Manuel Mazón-Suástegui: Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional No. 195, Col. Playa Palo de Santa Rita Sur, C.P. 23090. La Paz, Baja California Sur, México;


Received: 01-10-2014, Revised: 25-12-2014, Accepted: 03-01-2015, Published online: 13-02-2015


Corresponding author: José Manuel Mazón-Suástegui, email:

Citation: Garcia-Bernal M, Campa-Córdova AI, Saucedo PE, Casanova-Gonzalez M, Medina-Marrero R, Mazón-Suástegui JM (2015) Isolation and in vitro selection of actinomycetes strains as potential probiotics for aquaculture, Veterinary World 8(2);170-176.

Aim: This study was designed to describe a series of in vitro tests that may aid the discovery of probiotic strains from actinomycetes.

Materials and Methods: Actinomycetes were isolated from marine sediments using four different isolation media, followed by antimicrobial activity and toxicity assessment by the agar diffusion method and the hemolysis of human blood cells, respectively. Extracellular enzymatic production was monitored by the hydrolysis of proteins, lipids and carbohydrates. Tolerance to different pH values and salt concentrations was also determined, followed by hydrophobicity analysis and genetic identification of the most promising strains.

Results: Five out of 31 isolated strains showed antimicrobial activity against three Vibrio species. Three non-hemolytic strains (N7, RL8 and V4) among these active isolates yielded positive results in hydrophobicity tests and exhibited good growth at salt concentrations ranging from 0% to 10%, except strain RL8, which required a salt concentration >0.6%. Although these strains did not grow at pH<3, they showed different enzymatic activities. Phylogenetic analysis revealed that strains N7 and V4 have more than 99% identity with several Streptomyces species, whereas the closest matches to strain RL8 are Streptomyces panacagri and Streptomyces flocculus, with 98% and 98.2% similarity, respectively.

Conclusion: Three actinomycetes strains showing probiotic-like properties were discovered using several in vitro tests that can be easily implemented in different institutions around the world.

Keywords: aquaculture, marine actinomycetes, probiotics, Vibrio.

1. Bostock, J., McAndrew, B., Richards, R., Jauncey, K., Telfer, T., Lorenzen, K., Little, D., Ross, L., Handisyde, N., Gatward, I. and Corner, R. (2010) Aquaculture: Global status and trends. Philos. Trans. R. Soc. Lond B. Biol. Sci., 365(1554): 2897-2912.
PMid:20713392 PMCid:PMC2935128
2. Balcázar, J.L., Blas, I.D., Ruiz-Zarzuela, I., Cunningham, D., Vendrell, D. and Múzquiz, J.L. (2006) The role of probiotics in aquaculture. Vet. Microbiol., 114(3-4): 173-186.
3. Rollo, A., Sulpizio, R., Nardi, M., Silvi, S., Orpianesi, C., Caggiano, M., Cresci, A. and Carnevali, O. (2006) Live microbial feed supplement in aquaculture for improvement of stress tolerance. Fish Physiol. Biochem., 32: 167-177.
4. Beaz-Hidalgo, R., Balboa, S., Romalde, J.L. and Figueras, M.J. (2010) Diversity and pathogenecity of Vibrio species in cultured bivalve molluscs. Environ. Microbiol. Rep., 2: 34-43.
5. Paillard, C., Le Roux, F. and Borrego, J.J. (2004) Bacterial disease in marine bivalves, a review of recent studies: Trends and evolution. Aquat. Living Resour., 17: 477-498.
6. Pruzzo, C., Gallo, G. and Canesi, L. (2005) Persistence of vibrios in marine bivalves: the role of interactions with haemolymph components. Environ. Microbiol., 7(6): 761-772.
7. Cabello, F.C., Godfrey, H.P., Tomova, A., Ivanova, L., Dolz, H., Millanao, A. and Buschmann, A.H. (2013) Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol., 15(7): 1917-1942.
8. Labella, A., Gennari, M., Ghidini, V., Trento, I., Manfrin, A., Borrego, J.J. and Lleo, M.M. (2013) High incidence of antibiotic multi-resistant bacteria in coastal areas dedicated to fish farming. Mar. Pollut. Bull., 70(1-2): 197-203.
9. Perry, J.A. and Wright, G.D. (2013) The antibiotic resistance "mobilome": searching for the link between environment and clinic. Front. Microbiol., 4: 138.
PMid:23755047 PMCid:PMC3667243
10. Rolain, J.M. (2013) Food and human gut as reservoirs of transferable antibiotic resistance encoding genes. Front. Microbiol., 4: 173.
PMid:23805136 PMCid:PMC3690338
11. Campa-Córdova, A.I., Luna-González, A., Mazón-Suástegui, J.M., Aguirre-Guzmán, G., Ascencio, F. and González-Ocampo, H.A. (2011) Effect of probiotic bacteria on survival and growth of Cortez oyster larvae, Crassostrea corteziensis (Bivalvia: Ostreidae). Rev. Biol. Trop., 59(1): 183-191.
12. Kesarcodi-Watson, A., Kaspar, H., Lategan, M.J. and Gibson, L. (2008) Probiotics in aquaculture: The need, principles and mechanisms of action and screening processes. Aquaculture, 274: 1-14.
13. Luis-Villase-or, I.E., Campa-Córdova, A.I., Huerta-Aldáz, N., Luna-González, A., Mazón-Suástegui, J.M. and Flores-Higuera, F. (2013) Effect of beneficial bacteria in larval culture of Pacific white leg shrimp, Litopenaeus vannamei. Afr. J. Microbiol. Res., 7: 3471-3478.
14. Dharmaraj, S. (2011) Antagonistic potential of marine actinobacteria against fish and shellfish pathogens. Turk. J. Biol., 35: 303-311.
15. Dharmaraj, S. and Kandasamy, D. (2010) Evaluation of Streptomyces as probiotic feed for growth of ornamental fish Xiphophorus helleri. Food Technol. Biotechnol., 48: 497-504.
16. Das, S., Ward, L.R. and Burke, C. (2010) Screening of marine Streptomyces spp. for potential use as probiotics in aquaculture. Aquaculture, 305: 32-41.
17. Tuong, N.T.C., Nguyen Xuan, H., Le Thi Nam, T., Masaru, M. and Ikuo, M. (2011) Identification and characterization of actinomycetes antagonistic to pathogenic Vibrio spp. isolated from shrimp culture pond sediments in Thua Thien Hue–Viet Nam. J. Fac. Agric Kyushu Univ., 56: 15-20.
18. You, J.L., Cao, L.X., Liu, G.F., Zhou, S.N., Tan, H.M. and Lin, Y.C. (2005) Isolation and characterization of actinomycetes antagonistic to pathogenic Vibrio spp. from near shore marine sediments. World J. Microbial. Biotechnol., 21: 679-682.
19. Pisano, M., Sommer, M. and Lopez, M. (1986) Application of pretreatments for the isolation of bioactive actinomycetes from marine sediments. Appl. Microbiol. Biotechnol., 25: 285-288.
20. Jensen, P.R., Gontang, E., Mafnas, C., Mincer, T.J. and Fenical, W. (2005) Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environ. Microbiol., 7(7): 1039-1048.
21. Gonzalez, I., Ayuso-Sacido, A., Anderson, A. and Genilloud, O. (2005) Actinomycetes isolated from lichens: Evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol. Ecol., 54(3): 401-415.
22. Cowan, S.T. (1993) In: Barrow, G.I. and Feltham, R.K.A. editors. Cowan and Steel's Manual for the Identification of Medical Bacteria. University Press, Cambridge. p317.
23. Berkhoff, H.A. and Vinal, A.C. (1986) Congo red medium to distinguish between invasive and non-invasive Escherichia coli pathogenic for poultry. Avian Dis., 30(1): 117-121.
24. Sweet, S.P., MacFarlane, T.W. and Samaranayake, L.P. (1987) Determination of the cell surface hydrophobicity of oral bacteria using a modified hydrocarbon adherence method. FEMS Microbiol. Lett., 48: 159-163.
25. Mattos-Guaraldi, A.L., Formiga, L.C. and Andrade, A.F. (1999) Cell surface hydrophobicity of sucrose fermenting and nonfermenting Corynebacterium diphtheria strains evaluated by different methods. Curr. Microbiol., 38(1): 37-42.
26. Tresner, H.D., Hayes, J.A. and Backus, E.J. (1968) Differential tolerance of streptomycetes to sodium chloride as a taxonomic aid. Appl. Microbiol., 16(8): 1134-1136.
PMid:5675504 PMCid:PMC547607
27. León, J., Pellón, F., Unda, V., David, J., Anaya, C. and Mendoza, V. (2000) Producción de enzimas extracelulares por bacterias aisladas de invertebrados marinos. Rev. Peru. Biol., 7: 202-210.
28. Harley, J.P. and Prescott L.M. (2002) Laboratory Exercises in Microbiology. 5th ed. The McGraw-Hill Companies, New York.
29. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman D.J. (1990) Basic local alignment search tool. J. Mol. Biol., 215(3): 403-410.
30. Cole, J.R., Chai, B., Farris, R.J., Wang, Q., Kulam, S.A., McGarrell, D.M., Garrity, G.M. and Tiedje, J.M. (2005) The Ribosomal Database Project (RDP-II): Sequences and tools for high-throughput rRNA analysis. Nucl. Acids Res., 33: D294-296.
PMid:15608200 PMCid:PMC539992
31. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol., 30, 2725-2729.
PMid:24132122 PMCid:PMC3840312
32. Saitou, N. and Nei, M. (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4(4): 406-425.
33. Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16(2): 111-120.
34. Kwon, H.C., Kauffman, C.A., Jensen, P.R. and Fenical, W. (2006) Marinomycins A-D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus "marinispora". J. Am. Chem. Soc., 128(5): 1622-1632.
35. Mincer, T.J., Fenical, W. and Jensen, P.R. (2005) Culture-dependent and culture-independent diversity within the obligate marine actinomycete genus Salinispora. Appl. Environ. Microbiol., 71(11): 7019-7028.
PMid:16269737 PMCid:PMC1287694
36. Hawas, U.W., Shaaban, M., Shaaban, K.A., Speitling, M., Maier, A., Kelter, G., Fiebig, H.H., Meiners, M., Helmke, E. and Laatsch, H. (2009) Mansouramycins A-D, cytotoxic isoquinoline quinones from a marine streptomycete. J. Nat. Prod., 72: 2120-2124.
37. Heindl, H., Thiel, V., Wiese, J. and Imhoff, J.F. (2012) Bacterial isolates from the bryozoan Membranipora membranacea: Influence of culture media on isolation and antimicrobial activity. Int. Microbiol., 15(1): 17-32.
38. Hodges, T.W., Slattery, M. and Olson, J.B. (2012) Unique actinomycetes from marine caves and coral reef sediments provide novel PKS and NRPS biosynthetic gene clusters. Mar. Biotechnol. (NY), 14(3): 270-280.
39. Nithyanand P. and Pandian S.K. (2009) Phylogenetic characterization of culturable bacterial diversity associated with the mucus and tissue of the coral Acropora digitifera from the Gulf of Mannar. FEMS Microbiol. Ecol., 69(3): 384-394.
40. Schneemann, I., Nagel, K., Kajahn, I., Labes, A., Wiese, J. and Imhoff, J.F. (2010) Comprehensive investigation of marine actinobacteria associated with the sponge Halichondria panicea. Appl. Environ. Microbiol., 76(11): 3702-3714.
PMid:20382810 PMCid:PMC2876447
41. Sun, P., Maloney, K.N., Nam, S.J., Haste, N.M., Raju, R., Aalbersberg, W., Jensen, P.R., Nizet, V., Hensler, M.E. and Fenical, W. (2011) Fijimycins A-C, three antibacterial etamycin-class depsipeptides from a marine-derived Streptomyces sp. Bioorgan. Med. Chem., 19(22): 6557-6562.
PMid:21745747 PMCid:PMC3205191
42. Sun, W., Peng, C., Zhao, Y. and Li, Z. (2012) Functional gene-guided discovery of type II polyketides from culturable actinomycetes associated with soft coral Scleronephthya sp. PLoS One, 7(8): e42847.
PMid:22880121 PMCid:PMC3413676
43. Xi, L., Ruan J. and Huang, Y. (2012) Diversity and biosynthetic potential of culturable actinomycetes associated with marine sponges in the china seas. Int. J. Mol. Sci., 13(5): 5917-5932.
PMid:22754340 PMCid:PMC3382808
44. Sanchez, L.M., Wong, W.R., Riener, R.M., Schulze, C.J. and Linington, R.G. (2012) Examining the fish microbiome: Vertebrate-derived bacteria as an environmental niche for the discovery of unique marine natural products. PLoS One, 7(5): e35398.
PMid:22574119 PMCid:PMC3344833
45. Sheeja, M.S., Selvakumar, D. and Dhevendaran, K. (2011) Antagonistic potential of Streptomyces associated with the gut of marine ornamental fishes. Middle East J. Sci. Res., 7: 327-334.
46. Wu, S., Wang, G., Angert, E.R., Wang, W., Li, W. and Zou, H. (2012) Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS One, 7(2): e30440.
PMid:22363439 PMCid:PMC3282688
47. Zheng, Z, Zeng, W, Huang, Y, Yang, Z, Li, J, Cai, H and Su, W (2000) Detection of antitumor and antimicrobial activities in marine organism associated actinomycetes isolated from the Taiwan Strait, China. FEMS Microbiol. Lett., 188(1): 87-91.
48. Arafah, S., Kicka, S., Trofimov, V., Hagedorn, M., Andreu, N., Wiles, S., Robertson, B. and Soldati, T. (2013) Setting up and monitoring an infection of dictyosteliumdiscoideum with mycobacteria. In: Eichinger, L. and Rivero, F. editors. Dictyostelium Discoideum Protocols, Humana Press, New York. p403-417.
49. Wang, G.L., Yuan, S.P. and Jin, S. (2005) Nocardiosis in large yellow croaker, Larimichthys crocea (Richardson). J. Fish Dis., 28(6): 339-345.
50. Bermudez-Brito, M., Plaza-Diaz, J., Munoz-Quezada, S., Gomez-Llorente, C. and Gil, A. (2012) Probiotic mechanisms of action. Ann. Nutr. Metab., 61: 160-174.
51. Bezkorovainy, A. (2001) Probiotics: Determinants of survival and growth in the gut. Am. J. Clin. Nutr., 73: 399S-405S.
52. Jensen, P.R., Mincer, T.J., Williams, P.G. and Fenical, W. (2005) Marine actinomycete diversity and natural product discovery. Antonie van Leeuwenhoek, 87(1): 43-48.
53. Chater, K.F., Biro, S., Lee, K.J., Palmer, T. and Schrempf, H. (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol. Rev., 34(2): 171-198.
54. Prakash, D., Nawani, N., Prakash, M., Bodas, M., Mandal, A., Khetmalas, M., Kapadnis, B. (2013) Actinomycetes: A repertory of green catalysts with a potential revenue resource. Biomed. Res. Int., 2013: 264020.
PMid:23691495 PMCid:PMC3652136
55. Das, S., Ward, L.R., Burke, C. and Moriarty, D.J.W. (2008) Prospects of using marine actinobacteria as probiotics in aquaculture. Appl. Microbiol. Biot., 81(3): 419-429.
56. Berdy, J. (2005) Bioactive microbial metabolites. J. Antibiot. (Tokyo), 58: 1-26.