Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

ISSN (Print): 0972-8988


Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ

Open Access

Copyright: The authors. This article is an open access article licensed under the terms of the Creative Commons Attribution License

( which permits unrestricted use, distribution and reproduction in any medium, provided the work is properly cited.

Review (Published online: 13-01-2015)

10. Heat shock proteins: a therapeutic target worth to consider - Amita Dubey, K. S. Prajapati, Madhu Swamy and V. Pachauri

Veterinary World, 8(1): 46-51



   doi: 10.14202/vetworld.2015.46-51



Amita Dubey: Department of Pathology, College of veterinary science & AH, NDVSU, Jabalpur, Madhya Pradesh, India;

K. S. Prajapati: Department of Pathology, College of veterinary science & AH, AAU, Anand, Gujarat, India;

Madhu Swamy: Department of Pathology, College of veterinary science & AH, NDVSU, Jabalpur, Madhya Pradesh, India;

V. Pachauri: Krishi Vigyan Kendra, Jawaharlal Nehru Agricultural University, Sagar, Madhya Pradesh, India;


Received: 08-09-2014, Revised: 20-11-2014, Accepted: 28-11-2014, Published online: 13-01-2015


Corresponding author: Amita Dubey, e-mail:

Heat shock proteins (HSPs) are the molecular chaperones, that are not only expressed during the normal growth process of cell cycle consecutively, but also get induced in cells during various stress conditions produced by cellular insult, environmental changes, temperature, infections, tumors etc. According to their molecular weight and functions, HSPs are divided into five major families. HSP90, HSP70, HSP60 and HSP100 are the most studied members of the family. Experimental studies have proved that overexpression and/or inhibition of HSPs play an important role in maintaining the tolerance and cell viability under above-described stress conditions. HSP90 is found to be a promising candidate for the diagnosis, prognosis and treatment of cancer. Similarly, HSP70, HSP60 and small HSPs experimentally and clinically have potential for the treatment of neurodegenerative disease, ischemia, cell death, autoimmunity, graft rejection, etc. In a way, exploring, the cytoprotective and immunoregulatory role of HSPs can open a new avenue for the drug discovery and treatment of critical diseases.

Keywords: heat shock protein, heat shock protein 70, heat shock protein 90, stress protein, small heat shock proteins.

1. Ritossa, F. (1962) A new puffing pattern induced by temperature and DNP in Drosophila., Experientia, 18: 571–-573.
2. Schlesinger, M. J. (1990) Heat shock proteins., J. Biol. Chem., 265(21): 12111-12114.
3. Hendrick, J.P. and Hartl, F.U. (1993) Molecular chaperone functions of heat-shock proteins., Annu. Rev. Biochem., 62: 349-384.
4. Millar, L.N. and Murrell, G.A.C. (2012) Heat shock proteins in tendinopathy: Novel molecular regulators., Mediators. Inflamm., 2012: 436203.
PMid:23258952 PMCid:PMC3507314
5. Bellmann, K., Jaattela, M., Wissing, D., Burkart, V. and Kolb, H. (1996) Heat shock protein Hsp70 over expression confers resistance against nitric oxide., FEBS Lett., 391(1-2):185–-188.
6. Calabrese, V., Cornelius, C., Maiolino, L., Luca, M., Chiaramonte, R., Toscano, M.A., Serra, A. (2010) Oxidative stress redox homeostasis and cellular stress response in Ménière's disease: Role of vitagenes., Neurochem. Res., 35(12): 2208-2217.
7. Choi, Y.J., Kim, N.H., Lim, M.S., Lee, H.J., Kim, S.S. and Chun, W. (2014) Geldanamycin attenuates 3 Nitropropionic acid Induced apoptosis and JNK activation through the expression of HSP 70 in striatal cells., Int. J. Mol. Med., 34(1): 24-34.
PMid:24756698 PMCid:PMC4072345
8. Parsell, D.A. and Lindquist, S. (1994) Heat shock proteins and stress tolerance. In: Morimoto, R.I., Tissières, A. and Georgopoulos, C., editors. The Biology of Heat Shock Proteins and Molecular Chaperones., Vol. 26. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. p457-494.
9. Pathan, M.M., Latif, A., Das, H., Siddiquee, G.M. and Khan, J.Z. (2010) Heat Shock Proteins and their clinical Implications., Vet. World, 3: 558-560.
10. Coelho, V., and Faria, A.M. (2012) HSP60: Issues and insights on its therapeutic use as an immunoregulatory agent., Front. Immunol., 12(2): 97.
11. O'Neill, S., Ingman, T.G., Wigmore, S.J., Harrison, E.M. and Bellamy, C.O. (2013) Differential expression of heat shock proteins in healthy and diseased human renal allografts, Ann. Transplant, 18: 550-7.
12. Morimoto, R.I. (1998) Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors molecular chaperones and negative regulators., Gene Dev., 12: 3788-3796.
13. Pratt, W.B. and Toft, D.O. (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery., Exp. Biol. Med., 228(2): 111-33.
14. De Thonel, A., Le Mouël, A. and Mezger, V. (2012) Transcriptional regulation of small HSP-HSF1 and beyond., Int. J. Biochem. Cell B., 44(10): 1593-1612.
15. Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z. and Nardai, G. (1998) The 90-kDa molecular chaperone family: Structure function and clinical applications: A comprehensive review., Pharmacol. Therapeut., 79: 129–-168.
16. Csermely, P., Agoston, V. and Pongor, S. (2005) The efficiency of multi-target drugs: The network approach might help drug design., Trends Pharmacol. Sci., 26(4): 178–-182.
17. Garnier, C., Lafitte, D., Tsvetkov, P.O., Barbier, P., Leclerc-Devin, J., Millot, J.M., Briand, C., Makarov, A.A., Catelli, M.G. and Peyrot, V. (2002) Binding of ATP to heat shock protein 90: Evidence for an ATP-binding site in the C-terminal domain., J. Biol. Chem., 277(14): 12208–-12214.
18. Jego, G., Hazoumé, A., Seigneuric, R. and Garrido, C. (2013) Targeting heat shock proteins in cancer., Cancer Lett., 332(2): 275-85.
19. Richardson, P.G., Mitsiades, C.S., Laubach, J.P., Lonial, S., Chanan-Khan, A.A. and Anderson, K.C. (2011) Inhibition of heat shock protein 90 (HSP90) as a therapeutic strategy for the treatment of myeloma and other cancers., Br. J. Haematol., 152 (4): 367-379.
20. Okayama, S., Kopelovich, L., Balmus, G., Weiss, R.S., Herbert, B.S., Dannenberg, A.J. and Subbaramaiah, K. (2014) p53 protein regulates Hsp90 ATPase activity and thereby Wnt signaling by modulating Aha1 expression., J. Biol. Chem., 289(10): 6513-6525.
21. Banerji, U., O'donnell, A., Scurr, M., Pacey, S., Stapleton, S., Asad, Y., Simmons, L., Malone, Y. A., Raynaud F., Campbel L.M., Walton M., Lakhani S., Kaye S., Workman P., and Judson, I. (2005) Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino 17-demethoxygeldanamycin in patients with advanced malignancies., J. Clin. Oncol., 23(18): 4152–-4161.
22. Tavernier, E., Flandrin-Gresta, P., Solly, F., Rigollet, L., Cornillon, J., Augeul-Meunier, K., Stephan, J.L., Montmartin, A., Viallet, A., Guyotat, D. and Campos, L. (2012) HSP90 inhibition results in apoptosis of Philadelphia acute lymphoblastic leukaemia cells: An attractive prospect of new targeted agents., J. Cancer Res. Clin., 138(10): 1753-1758.
23. Giubellino, A., Sourbier, C., Lee, M.J., Scroggins, B., Bullova, P., Landau, M., Ying, W., Neckers, L., Trepel, J.B. and Pacak, K. (2013) Targeting heat shock protein 90 for the treatment of malignant pheochromocytoma., PLoS One., 8(2): e56083.
PMid:23457505 PMCid:PMC3573066
24. Tosti, G., Cocorocchio, E., Pennacchioli, E., Ferrucci, P.F., Testori, A. and Martinoli, C. (2014) Heat-shock proteins-based immunotherapy for advanced melanoma in the era of target therapies and immunomodulating agents., Expert Opin. Biol. Ther., 14(7): 955-967. doi:10.1517/14712598.2014.902928.
25. Paul, S. and Mahanta, S. (2014) Association of heat-shock proteins in various neurodegenerative disorders: Is it a master key to open the therapeutic door? Mol. Cell. Biochem., 386(1-2): 45-61.
26. Di Domenico, F., Sultana, R., Tiu, G.F., Scheff, N.N., Perluigi, M., Cini, C. and Butterfield, D.A. (2010) Protein levels of heat shock proteins 27, 32, 60, 70, 90 and thioredoxin-1 in amnestic mild cognitive impairment: An investigation on the role of cellular stress response in the progression of Alzheimer disease., Brain Res., 1333: 72-81.
PMid:20362559 PMCid:PMC2871982
27. Cornelius, C., Trovato Salinaro, A., Scuto, M., Fronte, V., Cambria, M.T., Pennisi, M., Bella, R., Milone, P., Graziano, A., Crupi, R., Cuzzocrea, S., Pennisi, G. and Calabrese, V. (2013) Cellular stress response sirtuins and UCP proteins in Alzheimer disease: Role of vitagenes., Immun. Ageing, 17: ;10 (1): 41.
28. Wang, X., Cattaneo, F., Ryno, L., Hulleman, J., Reixach, N. and Buxbaum, J.N. (2014) The systemic amyloid precursor transthyretin (TTR) behaves as a neuronal stress protein regulated by HSF1 in SH-SY5Y human neuroblastoma cells and APP23 Alzheimer's disease model mice., J. Neurosci., 34(21): 7253-7265.
PMid:24849358 PMCid:PMC4028500
29. Ebrahimi-Fakhari, D., Saidi, L.J. and Wahlster, L. (2013) Molecular chaperones and protein folding as therapeutic targets in Parkinson's disease and other synucleinopathies., Acta Neuropathol. Commun., 5(1): 1-79.
30. Bobkova, N.V., Garbuz, D.G., Nesterova, I., Medvinskaya, N., Samokhin, A., Alexandrova, I., Yashin, V., Karpov, V., Kukharsky, M.S., Ninkina, N.N., Smirnov, A.A., Nudler, E. and Evgenev, M. (2014) Therapeutic effect of exogenous hsp70 in mouse models of Alzheimer's disease., J. Alzheimers Dis., 38(2): 425-435.
31. Suzuki, Y., Ogawa, S. and Sakakibara, Y. (2009) Chaperone therapy for neuronopathic lysosomal diseases: Competitive inhibitors as chemical chaperones for enhancement of mutant enzyme activities., Perspect. Medicin. Chem., 3: 7-19.
32. Shukla, A.K., Pragya, P., Chaouhan, H.S., Tiwari, A.K., Patel, D.K., Abdin, M.Z. and Chowdhuri, D.K. (2014) Heat shock protein-70 (Hsp-70) suppresses paraquat-induced neurodegeneration by inhibiting JNK and caspase-3 activation in drosophila model of Parkinson's disease., PLoS One, 9(6): e98886.
PMid:24887138 PMCid:PMC4041817
33. Yenari, M.A., Giffard, R.G., Sapolsky, R.M. and Steinberg, G.K. (1999) The neuroprotective potential of heat shock protein 70 (HSP70)., Mol. Med. Today, 5(12): 525-531.
34. Sharp, F.R., Zhan, X., and Liu, D.Z., (2013) Heat shock proteins in the brain: Role of Hsp70 Hsp 27 and HO-1 (Hsp32) and their therapeutic potential., Transl. Stroke Res., 4(6): 685-692.
PMid:24323422 PMCid:PMC3858824
35. Marber, M.S., Mestril, R. and Chi, S.H. (1995) Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury., J. Clin. Invest., 95(4): 1446–-1456.
PMid:7706448 PMCid:PMC295626
36. Rajdev, S., Hara, K., Kokubo, Y., Mestril, R., Dillmann, W., Weinstein, P.R. and Sharp, F.R. (2000) Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction., Ann. Neurol., 47(6): 782–-791.<782::AID-ANA11>3.0.CO;2-3
37. Zhang, J., Lu, W., Lei, O., Tao, X., You, H. and Xie, P. (2013) Salvianolate increases heat shock protein expression in a cerebral ischemia-reperfusion injury model., Neural Regen. Res., 8(25): 2327–-2335.
PMid:25206542 PMCid:PMC4146039
38. Xia, D.Y., Li, W., Qian, H.R., Yao, S., Liu, J.G. and Qi, X.K. (2013) Ischemia preconditioning is neuroprotective in a rat cerebral ischemic injury model through autophagy activation and apoptosis inhibition., Braz. J. Med. Biol. Res., 46(7): 580-588.
PMid:23903681 PMCid:PMC3859329
39. Galdiero, M., Del'Ero, G.C. and Marcatili, A. (1997) Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins., Infect. Immun., 65(2): 699-707.
PMid:9009333 PMCid:PMC176116
40. Yadav, A.K., Kumar, V. and Jha, V. (2013). Heat shock proteins 60 and 70 specific proinflammatory and cytotoxic response of CD4+CD28 null cells in chronic kidney disease., Mediators. Inflamm., 2013: 384807.
PMid:24347824 PMCid:PMC3857845
41. Lovett, M.C., Coates, J.R., Shu, Y., Oglesbee, M.J., Fenner, W. and Moore, S.A. (2014) Quantitative assessment of hsp70 IL-1β and TNF-α in the spinal cord of dogs with E40K SOD1-associated degenerative myelopathy., Vet. J., 200(2): 312-317.
42. Grundtman, C., Kreutmayer, S.B., Almanzar, G., Wick, M.C. and Wick, G. (2011) Heat shock protein 60 and immune inflammatory responses in atherosclerosis., Arterioscler. Thromb. Vasc. Biol., 31(5): 960-968.
PMid:21508342 PMCid:PMC3212728
43. Wang, J., Li, Y. and Li, J. (2013) Cell stress response in rat chronic small bowel allograft rejection., Transplant. Proc., 45(6): 2539-2542.
44. Van Eden, W., Bonorino, C. and Van Der Zee, R. (2013) The immunology of cellular stress proteins., Front. Immunol., 4: 153.
PMid:23785370 PMCid:PMC3684847
45. Pockley, A.G. and Muthana, M. (2005) Heat shock proteins and allograft rejection., Contrib. Nephrol., 148:122-34.
46. Seemampillai, B., Germack, R., Felkin, L.E., McCormack, A., and Rose, M.L. (2014) Heat shock protein-27 delays acute rejection after cardiac transplantation: An experimental model., Transplantation, May 2998(1): 29-38.
47. Neuer, A., Spandorfer, S.D., Giraldo, P., Dieterle, S., Rosenwaks, Z. and Witkin, S.S. (2000) The role of heat shock proteins in reproduction., Hum. Reprod. Update, 6(2): 149-159.
48. Linhares, I.M. and Witkin, S.S. (2010) Immunopathogenic consequences of Chlamydia trachomatis 60 kDa heat shock protein expression in the female reproductive tract., Cell Stress Chaperone, 15 (5): 467-473.
PMid:20182835 PMCid:PMC3006632
49. Ji, Z., Duan, Y., Mou, L., Allam, J., Haidl, G., and Cai, Z. (2012) Association of heat shock proteins, heat shock factors and male infertility., Asian Pac. J. Reprod., 1(1): 76-84.
50. Acunzo, J., Katsogiannou, M. and Rocchi, P. (2012) Small heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death., Int. J. Biochem. Cell B., 44(10): 1622-1631.
51. Reddy, P.S., Kavi Kishor, P.B., Seiler, C., Kuhlmann, M., Eschen-Lippold, L., Lee, J., Reddy, M.K. and Sreenivasulu, N. (2014) Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: Its implications in drought stress response and seed development., PLoS One., 9(3): e89125.
PMid:24594978 PMCid:PMC3942355
52. Wood, K.L., Nunley, D.R., Moffatt-Bruce, S., Pope-Harman, A., Huang, Q., Shamo, E.N., Phillips, G.S., Baran, C., Batra, S., Marsh, C.B. and Doseff, A.I. (2010) The role of heat shock protein 27 in bronchiolitis obliterans syndrome after lung transplantation., J. Heart Lung Transpl., 29(7): 786-791.
PMid:20456980 PMCid:PMC2902709
53. Shemetov, A.A., Seit-Nebi, A.S. and Gusev, N.B. (2008) Structure, properties, and functions of the human small heat-shock protein HSP22 (HspB8, H11, E2IG1): A critical review., J. Neurosci. Res., 86(2): 264-269.
54. Tang, S., Lv, Y., Chen, H., Adam, A., Cheng, Y., Hartung, J. and Bao, E. (2014) Comparative analysis of αB-crystallin expression in heat-stressed myocardial cells in vivo and in vitro., PLoS One, 9(1): e86937.
PMid:24466295 PMCid:PMC3899361
55. Xu, F., Yu, H., Liu, J., and Cheng, L. (2013) αB-crystallin regulates oxidative stress-induced apoptosis in cardiac H9c2 cells via the PI3K/AKT pathway., Mol. Biol. Rep., 40(3): 2517-2526.
56. Parfitt, D.A., Aguila, M., McCulley, C.H., Bevilacqua, D., Mendes, H.F., Athanasiou, D., Novoselov, S.S., Kanuga, N., Munro, P.M., Coffey, P.J., Kalmar, B., Greensmith, L. and Cheetham, M.E. (2014) The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa., Cell Death Dis., 5: e1236.
PMid:24853414 PMCid:PMC4047904
57. Romanucci, M., Marinelli1, A., Sarli, G. and Salda, L. G. (2006) Heat shock protein expression in canine malignant mammary tumors., BMC Cancer, 6: 1471-2407.
PMid:16803633 PMCid:PMC1525201
58. Chu, R.M., Sun, T.J., Yang, H.Y., Wang, D.G., Liao, K.W., Chuang, T.F., Li, C.H. and Lee, W.C. (2001) Heat shock proteins in canine transmissible venereal tumor., Vet. Immunol. Immunopathol., 82(1-2): 9–-21.
59. Selvarajah, G.T., Bonestroo, F.A., Kirpensteijn, J., Kik, M.J., Van der Zee, R., Van Eden, W., Timmermans-Sprang, E.P., Slob, A. and Mol, J.A. (2013) Heat shock protein expression analysis in canine osteosarcoma reveals HSP60 as a potentially relevant therapeutic target., Cell Stress Chaperon, 18(5): 607-622.
PMid:23463150 PMCid:PMC3745254
60. Unger-Waron, H., Brenner, J., Paz, R., Moalem, U., and Trainin Z. (1996) gamma delta T-lymphocytes and anti-heat shock protein reactivity in bovine leukemia virus infected cattle., Vet. Immunol. Immunopathol., 51(1-2): 79-87.
61. Serrano, C., Bolea, R., Lyahyai, J., Filali, H., Varona, L., Marcos-Carcavilla, A., Cristina, A., Calvo, J.H., Serrano, M., Badiola, J.J., Zaragoza, P. and Martín-Burriel, I. (2011) Changes in HSP gene and protein expression in natural scrapie with brain damage., Vet. Res., 42(1): 13.
PMid:21314976 PMCid:PMC3037893