Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

ISSN (Print): 0972-8988

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access

Copyright: The authors. This article is an open access article licensed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use, distribution and reproduction in any medium, provided the work is properly cited.


Research (Published online: 30-01-2015)

23. Virulence genes detection of Salmonella serovars isolated from pork and slaughterhouse environment in Ahmedabad, Gujarat -

J. H. Chaudhary, J. B. Nayak, M. N. Brahmbhatt and P. P. Makwana

Veterinary World, 8(1): 121-124

 

 

   doi: 10.14202/vetworld.2015.121-124

 

 

J. H. Chaudhary: Department of Veterinary Public Health, College of Veterinary Science and Animal Husbandry, AAU, Anand - 388 001, Gujarat, India; jitvph007@gmail.com

J. B. Nayak: Department of Veterinary Public Health, College of Veterinary Science and Animal Husbandry, AAU, Anand - 388 001, Gujarat, India; jbn_anand@yahoo.com

M. N. Brahmbhatt: Department of Veterinary Public Health, College of Veterinary Science and Animal Husbandry, AAU, Anand - 388 001, Gujarat, India; mnbrahmbhatt2003@yahoo.com

P. P. Makwana: Department of Veterinary Public Health, College of Veterinary Science and Animal Husbandry, AAU, Anand - 388 001, Gujarat, India; paresh.makwana1989@gmail.com

 

Received: 05-11-2014, Revised: 18-12-2014, Accepted: 18-12-2014, Published online: 30-01-2014

 

Corresponding author: J. H. Chaudhary, e-mail: jitvph007@gmail.com



Aim: The aim was to detect virulence gene associated with the Salmonella serovars isolated from pork and Slaughterhouse environment.

Materials and Methods: Salmonella isolates (n=37) used in this study were isolated from 270 pork and slaughter house environmental samples collected from the Ahmedabad Municipal Corporation Slaughter House, Ahmedabad, Gujarat, India. Salmonella serovars were isolated and identified as per BAM USFDA method and serotyped at National Salmonella and Escherichia Centre, Central Research Institute, Kasauli (Himachal Pradesh, India). Polymerase chain reaction technique was used for detection of five genes, namely invA, spvR, spvC, fimA and stn among different serovars of Salmonella.

Results: Out of a total of 270 samples, 37 (13.70%) Salmonella were isolated with two serovars, namely Enteritidis and Typhimurium. All Salmonella serovars produced 284 bp invA gene, 84 bp fimA and 260 bp amplicon for enterotoxin (stn) gene whereas 30 isolates possessed 310 bp spvR gene, but no isolate possessed spvC gene.

Conclusion: Presence of invA, fimA and stn gene in all isolates shows that they are the specific targets for Salmonella identification and are capable of producing gastroenteric illness to humans, whereas 20 Typhimurium serovars and 10 Enteritidis serovars can able to produce systemic infection.

Keywords: pork, Salmonella, slaughterhouse environment, virulence genes



1. Jeffries, W. (2012) Mother Earth News-What Good Is a Pig, Homesteading and livestock. Available from: http://www.motherearthnews.com/homesteading-andlivestock/what-good-is-a-pig-cuts-of-pork-nose-to-tail. Accessed on 05-05-2012.
 
2. Agriculture and Processed Food Export Development Agency (APEDA), (2013). Available from: http://www.apeda.gov.in/apedawebsite/SubHead_Products/Sheep_Goat_Meat.htm. Accessed on 25-08-2013.
 
3. FAO (Food and Agriculture Organization). (2013) Food Outlook. Global Market Analysis. p51-54. Available from: http://www.fao.org/giews/. Last accessed on 14-12-2014.
 
4. Wang, L., Shi, L., Alam, M.J., Geng, Y. and Li, L. (2008) Specific and rapid detection of foodborne Salmonella by loop-mediated isothermal amplification method. Food Res. Int., 41: 69-74.
http://dx.doi.org/10.1016/j.foodres.2007.09.005
 
5. Smith, R.P., Clough H.E. and Cook, A.J. (2010) Analysis of meat juice ELISA results and questionnaire data to investigate farm-level risk factors for Salmonella infection in UK pigs. Zoonoses Public Health, 57(1): 39-48.
http://dx.doi.org/10.1111/j.1863-2378.2010.01362.x
PMid:21083817
 
6. Hernandeza, M., Gomez, J., Luqueb, I., Herrera, S., Maldonadob, A., Reguillob, L. and Astorgab, R.J. (2013) Salmonella prevalence and characterization in a free-range pig processing plant: Tracking in trucks, lairage, slaughter line and quartering. Int. J. Food Microbiol., 162(1): 48-54.
http://dx.doi.org/10.1016/j.ijfoodmicro.2012.12.026
PMid:23353554
 
7. Zheng, D.M., Bonde, M. and Sorensen, J.T. (2007) Associations between the proportion of Salmonella seropositive slaughter pigs and the presence of herd level risk factors for introduction and transmission of Salmonella in 34 Danish organic, outdoor (non-organic) and indoor finishing-pig farms. Livest. Sci., 106: 189-199.
http://dx.doi.org/10.1016/j.livsci.2006.08.003
 
8. Sabbagh, S.C., Forest, C.G., Lepage, C., Leclerc, J.M. and Daigle, F. (2010) Uncovering distinctive features in the genomes of Salmonella enterica serovars Typhimurium and typhi. FEMS. Microbiol. Lett., 305(1): 1-13.
http://dx.doi.org/10.1111/j.1574-6968.2010.01904.x
PMid:20146749
 
9. Darwin, K.H. and Miller, V.L. (1999) Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin. Microbiol. Rev., 12(3): 405-428.
PMid:10398673 PMCid:PMC100246
 
10. Heithoff, D.M., Shimp, W.R., Lau, P.W., Badie, G., Enioutina, E.Y., Daynes, K., Barbara, R.A., Byrne, A., House, J. and Mahan, M.J. (2008) Human Salmonella clinical isolates distinct from those of animal origin. Appl. Environ. Microbiol., 10: 1757-1766.
http://dx.doi.org/10.1128/AEM.02740-07
PMid:18245251 PMCid:PMC2268321
 
11. Chiu, C. and Ou, J.T. (1996) Rapid identification of salmonella serovars in feces by specific detection of virulence genes, invA and spvC, by an enrichment broth culture-multiplex PCR combination assay. J. Clin. Microbiol., 34(10): 2619-2622.
PMid:8880536 PMCid:PMC229337
 
12. Guiney, D., Fang, F., Krause, M. and Libby, S. (1994) Plasmid mediated virulence genes in non-typhoid Salmonella serovares. FEEMS Microbiol. Lett., 124(1): 1-9.
http://dx.doi.org/10.1111/j.1574-6968.1994.tb07253.x
 
13. Chopra, A.K., Houston, C.W., Peterson, J.W., Prasad, R. and Mekalanos, J.J. (1987) Cloning and expression of the Salmonella enterotoxin gene. J. Bacteriol., 169(11): 5095-5100.
PMid:2822664 PMCid:PMC213913
 
14. Andrews, W.H., Andrew, J. and Hammack, T. (2011) Salmonella. In: Bacteriological Analytical Manual. 8th ed., Ch. 5, Revision A. U.S. Food and Drug Administration, AOAC International, Gaithersburg, MD.
 
15. Kumar, K., Saklaini, A.C., Singh, S. and Singh, V.P. (2008) Evaluation of specificity for invA gene PCR for detection of Salmonella spp. Proceeding of VIIth Annual Conference of Indian Association of Veterinary Public Health Specialists (IAVPHS). November 07-09, 2008.
 
16. Pasmans, F., Van Immerseel, F., Heyndrickx, M., Godard, C., Wildemauwe, C., Ducatelle, R. and Haesebrouck, F. (2003) Host adaptation of pigeon isolates of Salmonella serovar Typhimurium var. Copenhagen PT99 is associated with macrophage cytotoxicity. Infect. Immunol., 71(10): 6068-6074.
http://dx.doi.org/10.1128/IAI.71.10.6068-6074.2003
PMid:14500532 PMCid:PMC201047
 
17. Oliveira, S.D., Rodenbusch, C.R., Michae, G.B., Cardoso, M.I., Canal, C.W. and Brandelli, A. (2003) Detection of virulence genes in Salmonella Enteritidis isolated from different sources. Braz. J. Microbiol., 34(1): 123-124.
http://dx.doi.org/10.1590/S1517-83822003000500042
 
18. Naravaneni, R. and Jamil, K. (2005). Rapid detection of food-borne pathogens by using molecular techniques. J. Med. Microbiol., 54: 51-54.
http://dx.doi.org/10.1099/jmm.0.45687-0
PMid:15591255
 
19. Alphons, J.A.M.V. and Jaap E.V.D. (2005) Distribution of ''classic'' virulence factors among Salmonella spp. FEMS. Immunol. Med. Microbiol., 44: 251-259.
http://dx.doi.org/10.1016/j.femsim.2005.02.002
PMid:15907446
 
20. Makino, S., Kurazono, H., Chongsanguam, M., Hayashi, H., Cheun, H., Suzuki, S. and Shirahata, T. (1999) Establishment of the PCR system specific to Salmonella spp. and its application for the inspection of food and fecal samples. J. Vet. Med. Sci., 61(11): 1245-1247.
http://dx.doi.org/10.1292/jvms.61.1245
PMid:10593584
 
21. Swamy, S.C., Barnhart, H.M., Lee, M.D. and Dreesen, D.W. (1996) Virulence determinants invA and spvC in salmonellae isolated from poultry products, wastewater, and human sources. Appl. Environ. Microbiol., 62(10): 3768-3771.
PMid:8837432 PMCid:PMC168184
 
22. Bhatta, D.R., Bangtrakulnonth, A., Tishyadhigama, P., Saroj, S.D., Bandekar, J.R., Hendriksen, R.S. and Kapadnis, B.P. (2007) Serotyping, PCR, phage-typing and antibiotic sensitivity testing of Salmonella serovars isolated from urban drinking water supply systems of Nepal. Lett. Appl. Microbiol., 44: 588-594.
http://dx.doi.org/10.1111/j.1472-765X.2007.02133.x
PMid:17576218
 
23. Araque, M. (2009) Nontyphoid Salmonella gastroenteritis in pediatric patients from urban areas in the city of Mérida, Venezuela. J. Infect. Dev. Control, 3(1): 28-34.
 
24. Amini, K., Salehi, T.Z., Nikbakht, G., Ranjbar, R., Amini, J. and Ashrafganjooei, S.B. (2010) Molecular detection of invA and spv virulence genes in Salmonella enteritidis isolated from human and animals in Iran. Afr. J. Microbiol. Res., 4(21): 2202-2210.
 
25. Dinjus, U., Hanvel, I., Muller, W., Bauerfeind, R. and Helmuth, R. (1997) Detection of the induction of Salmonella enterotoxin gene expression by contact with epithelial cells with RT-PCR. FEMS Microbiol. Lett., 146(2): 175-178.
http://dx.doi.org/10.1111/j.1574-6968.1997.tb10189.x
PMid:9011037
 
26. Rahman, H. (1999) Prevalence of enterotoxin gene (stn) among different serovars of Salmonella. Indian J. Med. Res., 110: 43-46.
PMid:10573653
 
27. Soto, S.M., Rodriguez, I., Rodicio, M.R., Vila, J. and Mendoza, M.C. (2006) Detection of virulence determinants in clinical strains of Salmonella enterica serovar Enteritidis and mapping on macrorestriction profiles. J. Med. Microbiol., 55: 365-373.
http://dx.doi.org/10.1099/jmm.0.46257-0
PMid:16533982