| 
              
              
              Open Access  
Copyright: The authors. This article is an open access 
article licensed under the terms of the Creative Commons Attribution License 
 
 
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use, 
distribution and reproduction in any medium, provided the work is properly 
cited. 
 
              
              
              Research 
              
              
(Published online: 
              23-07-2015) 
              15.  
              
              Detection and sequence analysis of accessory 
              gene regulator genes of Staphylococcus pseudintermedius 
              isolates - 
              M. Ananda Chitra, C. 
              Jayanthy and B. Nagarajan 
              
              Veterinary World, 8(7): 902-907   
              
   
                
                
doi: 
              10.14202/vetworld.2015.902-907   M. 
              Ananda Chitra: 
              Department of Veterinary Microbiology, Madras Veterinary College, 
              Tamil Nadu Veterinary and Animal Sciences 
              University, Chennai - 600 007, Tamil Nadu, India; m.anandachitra@tanuvas.org.in C. 
              Jayanthy: 
              Department of Veterinary Clinical Medicine, Madras Veterinary 
              College, Tamil Nadu Veterinary and Animal Sciences University, 
              Chennai - 600 007, Tamil Nadu, India;
              
              
              c.jayanthy@tanuvas.org.in B. 
              Nagarajan: Department of Veterinary Clinical Medicine, Madras 
              Veterinary College, Tamil Nadu Veterinary and Animal Sciences 
              University, Chennai - 600 007, Tamil Nadu, India;
              
              bnvetdr@yahoo.com   Received: 
              20-02-2015, Revised: 16-06-2015, Accepted: 26-06-2015, Published 
              online: 23-07-2015   
              
              
              Corresponding author: 
              
              M. Ananda Chitra, e-mail: m.anandachitra@tanuvas.org.in 
 
              Citation:Ananda Chitra M, 
              Jayanthy C, Nagarajan B (2015) Detection and sequence analysis of 
              accessory gene regulator genes of Staphylococcus 
              pseudintermedius isolates, Veterinary World 8(7): 
              902-907. 
 
              Abstract 
 
              Background: Staphylococcus pseudintermedius (SP) is the 
              major pathogenic species of dogs involved in a wide variety of 
              skin and soft tissue infections. The accessory gene regulator (agr) 
              locus of Staphylococcus aureus has been extensively 
              studied, and it influences the expression of many virulence genes. 
              It encodes a two-component signal transduction system that leads 
              to down-regulation of surface proteins and up-regulation of 
              secreted proteins during in vitro growth of S. aureus. 
              The objective of this study was to detect and sequence analyzing 
              the AgrA, B, and D of SP isolated from canine skin infections. 
              Materials and Methods: In this study, we have isolated and 
              identified SP from canine pyoderma and otitis cases by polymerase 
              chain reaction (PCR) and confirmed by PCR-restriction fragment 
              length polymorphism. Primers for SP agrA and agrBD 
              genes were designed using online primer designing software and 
              BLAST searched for its specificity. Amplification of the agr
              genes was carried out for 53 isolates of SP by PCR and 
              sequencing of agrA, B, and D were carried out for five isolates 
              and analyzed using DNAstar and Mega5.2 software.  
              Results: A total of 53 (59%) SP isolates were obtained from 90 
              samples. 15 isolates (28%) were confirmed to be 
              methicillinresistant SP (MRSP) with the detection of the mecA
              gene. Accessory gene regulator A, B, and D genes were detected 
              in all the SP isolates. Complete nucleotide sequences of the above 
              three genes for five isolates were submitted to GenBank, and their 
              accession numbers are from KJ133557 to KJ133571. AgrA amino acid 
              sequence analysis showed that it is mainly made of alpha-helices 
              and is hydrophilic in nature. AgrB is a transmembrane protein, and 
              AgrD encodes the precursor of the autoinducing peptide (AIP). 
              Sequencing of the agrD gene revealed that the 5 canine SP 
              strains tested could be divided into three Agr specificity groups 
              (RIPTSTGFF, KIPTSTGFF, and RIPISTGFF) based on the putative AIP 
              produced by each strain. The AIP of SP contains serine and produce 
              lactone ring structured AIP. 
              Conclusion: Presence of AgrA, B, and D in all SP isolates 
              implies the importance of this regulatory system in the virulence 
              genes expression of the SP bacteria. SP isolates can be typed 
              based on the AgrD auto-inducible protein sequences as it is being 
              carried out for typing of S. aureus isolates. However, 
              further studies are required to elucidate the mechanism of 
              controlling of virulence genes by agr gene locus in the 
              pathogenesis of soft tissue infection by SP. 
              Keywords: accessory gene regulator, dog, 
              skin infections, Staphylococcus pseudintermedius. 
 
              References 
 
                
                  | 1. Devriese, L.A., Vancanneyt, M., Baele, M., Vaneechoutte, 
                  M., De Graef, E., Snauwaert, C., Cleenwerck, I., Dawyndt, P., 
                  Swings, J., Decostere, A. and Haesebrouck, F. (2005) 
                  Staphylococcus pseudintermedius sp. nov., a coagulase-positive 
                  species from animals. Int. J. Syst. Evol. Microbiol., 55(Pt 
                  4): 1569-1573. http://dx.doi.org/10.1099/ijs.0.63413-0
 PMid:16014483
 |  
                  |  |  
                  | 2. Novick, R.P., Projan, S.J., Kornblum, J., Ross, H.F., Ji, 
                  G., Kreiswirth, B., Vandenesch, F. and Moghazeh, S. (1995). 
                  The agr P2 operon: An autocatalytic sensory transduction 
                  system in Staphylococcus aureus. Mol. Genet. Genomics., 
                  248(4): 446-458. http://dx.doi.org/10.1007/BF02191645
 |  
                  |  |  
                  | 3. Janzon, L., Lofdahl, S. and Arvidson, S. (1989) 
                  Identification and nucleotide sequence of the delta-lysin 
                  gene, hld, adjacent to the accessory gene regulator (agr) of 
                  Staphylococcus aureus. Mol. Genet. Geneomics., 219(3): 
                  480-485. http://dx.doi.org/10.1007/BF00259623
 |  
                  |  |  
                  | 4. Lina, G., Jarraud, S., Ji, G., Greenland, T., Pedraza, A., 
                  Etienne, J., Novick, R.P. and Vandenesch, F. (1998) 
                  Transmembrane topology and histidine protein kinase activity 
                  of AgrC, the agr signal receptor in Staphylococcus aureus. 
                  Mol. Microbiol., 28(3): 655-662. http://dx.doi.org/10.1046/j.1365-2958.1998.00830.x
 |  
                  |  |  
                  | 5. Novick, R.P., Ross, H.F., Projan, S.J., Kornblum, J., 
                  Kreiswirth, B. and Moghazeh, S. (1993) Synthesis of 
                  staphylococcal virulence factors is controlled by a regulatory 
                  RNA molecule. EMBO. J., 12(10): 3967-3975. PMid:7691599 PMCid:PMC413679
 |  
                  |  |  
                  | 6. Bannoehr, J., Franco, A., Iurescia, M., Battisti, A. and 
                  Fitzgerald, J.R. (2009) Molecular diagnostic identification of 
                  Staphylococcus pseudintermedius. J. Clin. Microbiol., 47: 
                  469-471. http://dx.doi.org/10.1128/JCM.01915-08
 PMid:19091817 PMCid:PMC2643665
 |  
                  |  |  
                  | 7. Bannoehr, J., Ben Zakour, N.L., Waller, A.S., Guardabassi, 
                  L., Thoday, K.L., Broek, A.H.M. and Fitzgerald, J.R. (2007) 
                  Population genetic structure of the Staphylococcus intermedius 
                  group: Insights into agr diversification and the emergence of 
                  methicillin-resistant strains. J. Bacteriol., 189: 8685-8692. http://dx.doi.org/10.1128/jb.01150-07
 |  
                  |  |  
                  | 8. Sasaki, T., Kikuchi, K., Tanaka, Y., Takahashi, N., Kamata, 
                  S. and Hiramatsu, K. (2007) Methicillin-resistant 
                  Staphylococcus pseudintermedius in a veterinary teaching 
                  hospital. J. Clin. Microbiol., 45: 1118-1125. http://dx.doi.org/10.1128/JCM.02193-06
 PMid:17267624 PMCid:PMC1865850
 |  
                  |  |  
                  | 9. Zubeir, I.E., Kanbar, J., Alber, C., Lammler, O., Akineden, 
                  R., Weiss, and M. Zschock. 2007. Phenotypic and genotypic 
                  characteristics of methicillin/oxacillin-resistant 
                  Staphylococcus intermedius isolated from clinical specimens 
                  during routine veterinary microbiological examinations. Vet. 
                  Microbiol., 121: 170-176. http://dx.doi.org/10.1016/j.vetmic.2006.11.014
 PMid:17174042
 |  
                  |  |  
                  | 10. Anonymous. (2009) Reflection Paper on meticillin-resistant 
                  Staphylococcus pseudintermedius. Committee for Medicinal 
                  Products for Veterinary Use (CVMP), European Medicines Agency, 
                  EMA/CVMP/SAGAM/736964/2009. |  
                  |  |  
                  | 11. Perreten, V., Kadlec, K., Schwarz, S., Andersson, UG., 
                  Finn, M., Greko, C., Moodley, A., Kania, S.A., Frank, L.A., 
                  Bemis, D.A., Franco, A., Iurescia, M., Battisti, A., Duim, B., 
                  Wagenaar, J.A., Duijkeren, E., Scott Weese. J., Fitzgerald, 
                  R.J., Rossano, A. and Guardabassi, L. (2010) Clonal spread of 
                  methicillin-resistant Staphylococcus pseudintermedius in 
                  Europe and North America: An international multicentre study. 
                  J. Antimicrob. Chemother., 65: 1145-1154. http://dx.doi.org/10.1093/jac/dkq078
 |  
                  |  |  
                  | 12. Onuma, K., Tanabe, T. and Sato, H. (2011) Antimicrobial 
                  resistance of Staphylococcus pseudintermedius isolates from 
                  healthy dogs and dogs affected with pyoderma in Japan. Vet. 
                  Dermatol, 23: 17-e5. http://dx.doi.org/10.1111/j.1365-3164.2011.00995.x
 PMid:21745248
 |  
                  |  |  
                  | 13. Feng, Y., Tian, W., Lin, D., Luo, Q., Zhou, Y., Yang, T., 
                  Deng, Y., Liu, Y.H. and Liu, J.H. (2012) Prevalence and 
                  characterization of methicillin-resistant Staphylococcus 
                  pseudintermedius in pets from South China. Vet. Microbiol., 
                  160: 517-524. http://dx.doi.org/10.1016/j.vetmic.2012.06.015
 PMid:22770517
 |  
                  |  |  
                  | 14. Hariharan, H., Gibson, K., Peterson, R., Frankie, M., 
                  Matthew, V., Daniels, J., Martin, N.A., Andrews, L., Paterson, 
                  T. and Sharma, R.N. (2014) Staphylococcus pseudintermedius and 
                  Staphylococcus schleiferi subspecies coagulans from drugs. 
                  Vet. Med. Int., 2014: Article ID: 850126. Available from: 
                  http://www.dx.doi.org/10.1155/2014/850126. Accessed on 
                  16.03.2014. 4.19 PM |  
                  |  |  
                  | 15. Matanović, K., eMekić, S. and Seol, B. (2012) 
                  Antimicrobial susceptibility of Staphylococcus 
                  pseudintermedius isolated from dogs. Vet. Arch., 82(5): 
                  505-517. |  
                  |  |  
                  | 16. Nikolskaya, A.N. and Galperin, M.Y. (2002) A novel type of 
                  conserved DNA-binding domain in the transcriptional regulators 
                  of the AlgR/AgrA/LytR family. Nucleic Acids Res., 30: 
                  2453-2459. http://dx.doi.org/10.1093/nar/30.11.2453
 PMid:12034833 PMCid:PMC117183
 |  
                  |  |  
                  | 17. Sidote, D.J., Barbieri, C.M., Wu, T. and Stock, A.M. 
                  (2008) Structure of the Staphylococcus aureus AgrA LytTR 
                  domain bound to DNA reveals a beta fold with an unusual mode 
                  of binding. Structure, 16: 72-35. http://dx.doi.org/10.1016/j.str.2008.02.011
 PMid:18462677 PMCid:PMC2430735
 |  
                  |  |  
                  | 18. Traber, K. and Novick, R. (2006) A slipped-mispairing 
                  mutation in AgrA of laboratory strains and clinical isolates 
                  results in delayed activation of agr and failure to translate 
                  delta - and alpha-haemolysins. Mol. Microbiol., 59: 1519-1530. http://dx.doi.org/10.1111/j.1365-2958.2006.04986.x
 PMid:16468992
 |  
                  |  |  
                  | 19. Ji, G., Beavis, R.C., Novick, R.P. (1995) Cell density 
                  control of staphylococcal virulence mediated by an octapeptide 
                  pheromone. Proc. Natl. Acade. Sci. U S A., 92(26), 
                  12055-12059. http://dx.doi.org/10.1073/pnas.92.26.12055
 |  
                  |  |  
                  | 20. Zhang, L., Gray, L., Novick, R.P. and Ji, G. (2002) 
                  Transmembrane topology of AgrB, the protein involved in the 
                  post-translational modification of AgrD in Staphylococcus 
                  aureus. J. Biol. Chem., 277(38): 34736-34742. http://dx.doi.org/10.1074/jbc.M205367200
 PMid:12122003
 |  
                  |  |  
                  | 21. Qiu, R., Pei, W., Zhang, L., Lin, J. and Ji, G. (2005) 
                  Identification of the putative staphylococcal AgrB catalytic 
                  residues involving the proteolytic cleavage of AgrD to 
                  generate autoinducing peptide. J. Biol. Chem., 280(17): 
                  16695-16704. http://dx.doi.org/10.1074/jbc.M411372200
 PMid:15734745
 |  
                  |  |  
                  | 22. Mayville, P., Ji, G., Beavis, R., Yang, H., Goger, M., 
                  Novick, R.P. and Muir, T. (1999) Structure-activity analysis 
                  of synthetic autoinducing thiolactone peptides from 
                  Staphylococcus aureus responsible for virulence. Proc. Natl. 
                  Acade. Sci. USA., 96: 1218-1223. http://dx.doi.org/10.1073/pnas.96.4.1218
 PMid:9990004 PMCid:PMC15443
 |  
                  |  |  
                  | 23. Sung, J.M.L., Chantler, P.D. and Lloyd, D.H. (2006) 
                  Accessory gene regulator locus of Staphylococcus intermedius. 
                  Infect. Immun., 74(5): 2947-2956. http://dx.doi.org/10.1128/IAI.74.5.2947-2956.2006
 PMid:16622233 PMCid:PMC1459752
 |  
                  |  |  
                  | 24. Ji, G., Beavis, R. and Novick, R.P. (1997) Bacterial 
                  interference caused by autoinducing peptide variants. Science, 
                  276: 2027-2030. http://dx.doi.org/10.1126/science.276.5321.2027
 PMid:9197262
 |  
                  |  |  
                  | 25. Novick, R.P. (2003) Autoinduction and signal transduction 
                  in the regulation of Staphylococcal virulence. Mol. 
                  Microbiol., 48: 1429-1449. http://dx.doi.org/10.1046/j.1365-2958.2003.03526.x
 PMid:12791129
 |  
                  |  |  
                  | 26. Peerayeh, S.N., Azimian, A., Nejad, Q.B. and Kashi, M. 
                  (2009) Prevalence of agr Specificity Groups Among 
                  Staphylococcus aureus Isolates from University Hospitals in 
                  Tehran. Labmedicine, 40(1): 27-29. http://dx.doi.org/10.1309/lmgb9gb82wkdanwf
 |  |