Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916


Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ

Open Access

Copyright: The authors. This article is an open access article licensed under the terms of the Creative Commons Attribution License

( which permits unrestricted use, distribution and reproduction in any medium, provided the work is properly cited.

Research (Published online: 07-07-2015)

2.  Modeling of spatial distribution for scorpions of medical importance in the São Paulo State, Brazil - José Brites-Neto and Keila Maria Roncato Duarte

Veterinary World, 8(7): 823-830



   doi: 10.14202/vetworld.2015.823-830


José Brites-Neto: Epidemiological Surveillance Department, Secretariat of Health, Americana, São Paulo, Brazil;

Keila Maria Roncato Duarte: Department of Genetics and Animal Reproduction, Institute of Animal Science, Nova Odessa, São Paulo, Brazil;


Received: 12-03-2015, Revised: 01-06-2015, Accepted: 10-06-2015, Published online: 07-07-2015


Corresponding author: José Brites-Neto, e-mail:

Citation: Brites-Neto J, Duarte KMR (2015) Modeling of spatial distribution for scorpions of medical importance in the São Paulo State, Brazil, Veterinary World 8(7): 823-830.

Aim: In this work, we aimed to develop maps of modeling geographic distribution correlating to environmental suitability for the two species of scorpions of medical importance at São Paulo State and to develop spatial configuration parameters for epidemiological surveillance of these species of venomous animals.

Materials and Methods: In this study, 54 georeferenced points for Tityus serrulatus and 86 points for Tityus bahiensis and eight environmental indicators, were used to generate species distribution models in Maxent (maximum entropy modeling of species geographic distributions) version 3.3.3k using 70% of data for training (n=38 to T. serrulatus and n=60 to T. bahiensis) and 30% to test the models (n=16 for T. serrulatus and n=26 for T. bahiensis). The logistic threshold used to cut models in converting the continuous probability model into a binary model was the “maximum test sensitivity plus specificity,” provided by Maxent, with results of 0.4143 to T. serrulatus and of 0.3401 to T. bahiensis. The models were evaluated by the area under the curve (AUC), using the omission error and the binomial probability. With the data generated by Maxent, distribution maps were produced using the “ESRI® ArcGIS 10.2.2 for Desktop” software.

Results: The models had high predictive success (AUC=0.7698±0.0533, omission error=0.2467 and p<0.001 for T. serrulatus and AUC=0.8205±0.0390, omission error=0.1917 and p<0.001 for T. bahiensis) and the resultant maps showed a high environmental suitability in the north, central, and southeast of the state, confirming the increasing spread of these species. The environmental variables that mostly contributed to the scorpions species distribution model were rain precipitation (28.9%) and tree cover (28.2%) for the T. serrulatus and temperature (45.8%) and thermal amplitude (12.6%) for the T. bahiensis.

Conclusion: The distribution model of these species of medical importance scorpions in São Paulo State revealed a higher environmental suitability of these species in the regions north, central, and southeast of the state, warning to emergencies actions for prevention and surveillance from scorpion stings in several counties. There is also a need to best conservation strategies related to neighboring territories, with the implementation of new environmental protected areas and measures of spread control of these species in urban areas of several counties.

Keywords: binomial probability, environmental variable, georeferencing, maxent, Tityus bahiensis, Tityus serrulatus.

1. Lourenço, W.R. (2014) Scorpion diversity and distribution: Past and present patterns. In: Gopalakrishnakone, P., Schwartz, E.F., Possani, L.D., Rodríguez de la Vega, R.C., editors. Scorpion Venoms. Toxinology. Springer Science+Business Media, Dordrecht. p1-20. doi:10.1007/978-94-007-6647-1.
2. Porto, T.J., Brazil, T.K. and Souza, C.A.R. (2010) Diversidade de escorpiões do Brasil. In: Brazil, T.K. and Porto, T.J., editors. Os Escorpiões. EDUFBA, Salvador. p47-63.
3. Scholte, R.G.C., Caldeira, R.L., Simões, M.C.M., Stutz, W.H., Silva, L.L., Carvalho, O.S. and Oliveira, G. (2009) Inter – and intrapopulational genetic variability of Tityus serrulatus (Scorpiones, Buthidae). Acta Trop., 112: 97-100.
4. Goyffon, M. and Tournier, J.N. (2014) Scorpions: A presentation. Toxins, 6: 2137-2148.
PMid:25133517 PMCid:PMC4113747
5. Lourenço, W.R. and Von Eickstedt, V.R.D. (2009) Scorpions of medical importance. In: Cardoso, J.L.C., França, F.O.S., Wen, F.H., Málaque, C.M.S., Haddad, Jr., V. Poisonous Animals in Brazil. Biology, Clinical and therapeutics of accidents. Sarvier, São Paulo. p198-213 .
6. Wentz, E.A., Anderson, S., Fragkias, M., Netzband, M., Mesev, V., Myint, S.W., Quattrochi, D., Rahman, A. and Seto, K.C. (2014) Supporting global environmental change research: A review of trends and knowledge gaps in Urban remote sensing. Remote Sens., 6: 3879-3905.
7. Stockmann, R. and Ythier, E. (2010) Scorpions of the World. NAP editions, Paris.
8. Rosa, C.M., Abegg, A.D., Borges, L.M., Bitencourt, G.S.S. and Di Mare, R.A. (2015) New record and occurrence map of Tityus serrulatus Lutz & Mello, 1922 (Scorpiones, Buthidae) in the state of rio grande do sul, southern Brazil. Check List, 11(1): 1556. doi:
9. Chippaux, J.P. (2012) Emerging options for the management of scorpion stings. Drug. Des. Dev. Ther., 6: 165-173.
PMid:22826633 PMCid:PMC3401053
10. Porto, T.J. and Brazil, T.K. (2010) Quem são os Escorpiões? In: Brazil, T.K. and Porto, T.J. Os Escorpiões. EDUFBA, Salvador. p15-32.
11. Lourenço, W.R. and Cloudsley-Thompson, J.L. (1999) Discovery of a sexual population of Tityus serrulatus, one of the morphs within the complex Tityus stigmurus (Scorpiones, Buthidae). J. Arachnol., 27: 154-158.
12. Pardal, P.P.O., Ishikawa, E.A.Y., Vieira, J.L.F., Coelho, J.S., Dórea, R.C.C., Abati, P.A.M., Quiroga, M.M.M. and Chalkidis, H.M. (2014) Clinical aspects of envenomation caused by Tityus obscurus (Gervais, 1843) in two distinct regions of Pará state, Brazilian Amazon basin: A prospective case series. J. Venom. Anim. Toxins Incl. Trop. Dis., 20: 3. doi:10.1186/1678-9199-20-3.
13. Reckziegel, G.C. and Pinto Jr, V.L. (2014) Scorpionism in Brazil in the years 2000 to 2012. J. Venom. Anim. Toxins Incl. Trop. Dis., 20: 46. doi:10.1186/1678-9199-20-46.
14. Brazil, Secretariat of Health Surveillance, Department of Epidemiological Surveillance (2009) Control manual of scorpions. Ministry of Health, Brasília..
15. Lucas, S.M., Goldoni, P.A.M., Candido, D.M. and Knysak, I. (2010) Butantan institute: strategies to obtain scorpions for the production of anti-scorpion serum. J. Venom. Anim. Toxins Incl. Trop. Dis., 16(4): 530-533.
16. Eickstedt, V.R.D., von Ribeiro, L.A., Candido, D.M., Albuquerque, M.J. and Jorge, M.T. (1996) Evolution of scorpionism by Tityus bahiensis (Perty) and Tityus serrulatus lutz and mello and geographical distribution of the two species in the state of São Paulo - Brazil. J. Venom. Anim. Toxins, 2(2). doi:10.1590/S0104-79301996000200003.
17. Szilagyi-Zecchin, V.J., Fernandes, A.L., Castagna, C.L. and Voltolini, J.C. (2012) Abundance of scorpions Tityus serrulatus and Tityus bahiensis associated with climate in urban area (Scorpiones, Buthidae). Indian Journal of Arachnology, 1(2): 15-23.
18. Hoshino, K., Moura, A.T.V. and De Paula, H.M.G. (2006) Selection of enviromental temperature by the yellow scorpion Tityus serrulatus Lutz and Mello, 1992 (Scorpiones, Buthidae). J. Venom. Toxins Incl. Trop. Dis., 12: 59-66.
19. Cloudsley-Thompson, J.L. (1975) Adaptations of arthropoda to arid environments. Annu. Rev. Entomol., 20: 261-283.
20. Gefen, E. and Ar, A. (2006) Temperature dependence of water loss rates in scorpions and its effect on the distribuition of Buthotus judaicus (Buthidae) in Israel. Comp. Biochem. Physiol., 144: 58-62.
21. Chowell, G., Hyman, J.M., Díaz-Due-as, P. and Hengartner, N.W. (2005) Predicting scorpion sting incidence in a endemic region using climatological variables. Int. J. Environ. Health Res., 15: 425-435.
22. Ferraz, K.M.P., Beisiegel, B.M., Paula, R.C., Sana, D.A., Campos, C.B., Oliveira, T.G. and Desbiez, A.L.J. (2012) How species distribution models can improve cat conservation - Jaguars in Brazil. Cat. News, 7: 38-42.
23. Patel, A. and Waters, N. (2012) Using geographic information systems for health research. In: Alam, B.M., editor. Application of Geographic Information Systems. InTech, Rijeka. p303-320.
24. Phillips, S.J., Anderson, R.P. and Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecol. Model., 190: 231-259.
25. Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams, S., Wisz, M.S. and Zimmermann, N.E. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29: 129-151.
26. Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. and Yates, C.J. (2011) A statistical explanation of Max Ent for ecologists. Divers. Distrib., 17(1): 43-57. doi:10.1111/j.1472-4642.2010.00725.x.
27. Mateo, R.G., Croat, T.B., Felicísimo, A.M. and Mu-oz, J. (2010) Profile or group discriminative techniques? Generating reliable species distribution models using pseudo-absences and target-group absences from natural history collections. Divers. Distrib., 16(1): 84-94. doi:10.1111/j.1472-4642.2009.00617.x.
28. Miller, A.L., Makowsky, R.A., Formanowicz, D.R., Prendini, L. and Cox, C.L. (2014) Cryptic genetic diversity and complex phylogeography of the boreal North American scorpion, Paruroctonus boreus (Vaejovidae). Mol. Phylogenet. Evol., 71: 298-307.
29. Rogers, D.P., Shapiro, M.A., Brunet, G., Cohen, J.C., Connor, S.J., Diallo, A.A., Elliott, W., Haidong, K., Hales, S., Hemming, D., Jeanne, I., Lafaye, M., Mumba, Z., Raholijao, N., Rakotomanana, F., Teka, H., Trtanj, J. and Whung, P.Y. (2010) Health and climate – Opportunities. Proc. Environ. Sci., 1: 37-54.
30. Phillips, S.J. and Dudik, M. (2008) Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31: 161-175.
31. Pearson, R.G. (2010) Species' distribution modeling for conservation educators and practitioners. Synthesis. Lessons Conserv., 3: 54-89.
32. Veloz, S.D. (2009) Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J. Biogeogr., 36: 2290-2299.
33. Lira, A.F.A. and Souza, A.M. (2014) Microhabitat use by scorpion species (Arachnida: Scorpiones) in the montane Atlantic Rain Forest, Brazil. Rev. Iber. Aracnol., 24: 107-108.
34. Silva, A.V.M., Magalhaes, M.A.F., Brazil, R.P. and Carreira, J.C.A. (2011) Ecological study and risk mapping of leishmaniasis in an endemic area of Brazil based on a geographical information systems approach. Geospat. Health, 6(1): 33-40.
35. Kshirsagar, D.P., Savalia, C.V., Kalyani, I.H., Kumar, R. and Nayak, D.N. (2013) Disease alerts and forecasting of zoonotic diseases: An overview. Vet. World, 6(11): 889-896.
36. Aparicio, C. and Bitencourt, M.D. (2004) Modelagem espacial de zonas de risco da leishmaniose tegumentar americana. Rev. Saúde Públ., 38(4): 511-516.
37. Kalluri, S., Gilruth, P., Rogers, D. and Szczur, M. (2007) Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: A review. PLoS Pathog., 3(10): e116. doi:10.1371/journal.ppat.0030116.
38. Carreira, J.C.A., Magalhães, M.A.F. and Silva, A.V.M. (2014) The geospatial approach on eco-epidemiological studies of leishmaniasis. In: Claborn, D. Leishmaniasis – Trends in Epidemiology, Diagnosis and Treatment. InTech, Rijeka. p125-145.
39. Porto, T.J., Carnaval, A.C. and Rocha, P.L.B. (2013) Evaluating forest refugial models using species distribution models, model filling and inclusion: A case study with 14 Brazilian species. Divers. Distrib., 19: 330-340.
40. Lourenço, W.R. (2002) Scorpions of Brazil. Les Editions de l'IF, Paris.
41. Souza, C.A.R., Candido, D.M., Lucas, S.M. and Brescovit, A.D. (2009) On the Tityus stigmurus complex (Scorpiones, Buthidae). Zootaxa, 1987: 1-38.
42. Almeida, R.B. (2010) Atlas das espécies de Tityus C.L. Koch, 1836 (Scorpiones, Buthidae) do Brasil. Master's Thesis in Biological Sciences. Submitted to Universidade de São Paulo, São Paulo, Brazil.