Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916


Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ

Open Access

Research (Published online: 31-12-2016)

26. Altered oxidative stress and carbohydrate metabolism in canine mammary tumors - K. Jayasri, K. Padmaja and M. Saibaba

Veterinary World, 9(12): 1489-1492



   doi: 10.14202/vetworld.2016.1489-1492


K. Jayasri: Department of Veterinary Biochemistry, College of Veterinary Science, Tirupati, Andhra Pradesh, India;

K. Padmaja: Department of Veterinary Biochemistry, College of Veterinary Science, Tirupati, Andhra Pradesh, India;

M. Saibaba: Department of Surgery and Radiology, College of Veterinary Science, Tirupati, Andhra Pradesh, India;


Received: 25-06-2016, Accepted: 24-11-2016, Published online: 31-12-2016


Corresponding author: K. Jayasri, e-mail:

Citation: Jayasri K, Padmaja K, Saibaba M (2016) Altered oxidative stress and carbohydrate metabolism in canine mammary tumors, Veterinary World, 9(12): 1489-1492.

Aim: Mammary tumors are the most prevalent type of neoplasms in canines. Even though cancer induced metabolic alterations are well established, the clinical data describing the metabolic profiles of animal tumors is not available. Hence, our present investigation was carried out with the aim of studying changes in carbohydrate metabolism along with the level of oxidative stress in canine mammary tumors.

Materials and Methods: Fresh mammary tumor tissues along with the adjacent healthy tissues were collected from the college surgical ward. The levels of thiobarbituric acid reactive substances (TBARS), glutathione, protein, hexose, hexokinase, glucose-6-phosphatase, fructose-1, 6-bisphosphatase, and glucose-6-phosphate dehydrogenase (G6PD) were analyzed in all the tissues. The results were analyzed statistically.

Results: More than two-fold increase in TBARS and three-fold increase in glutathione levels were observed in neoplastic tissues. Hexokinase activity and hexose concentration (175%) was found to be increased, whereas glucose-6-phosphatase (33%), fructose-1, 6-bisphosphatase (42%), and G6PD (5 fold) activities were reduced in tumor mass compared to control.

Conclusion: Finally, it was revealed that lipid peroxidation was increased with differentially altered carbohydrate metabolism in canine mammary tumors.

Keywords: 6-bisphosphatase, canine mammary tumor, fructose-1, glucose-6-phosphatase, glucose-6-phosphate dehydrogenase, hexokinase, thiobarbituric reactive substances.

1. Kumaraguruparan, R., Balachandran, C., Manohar, B.M. and Nagini, S. (2005) Altered oxidant-antioxidant profile in canine mammary tumours. Vet. Res. Commun., 29(4): 287-296.
2. Ray, G. and Hussain, S.A. (2002) Oxidants, antioxidants and carcinogenesis. Indian J. Exp. Biol., 40: 1213-1232.
3. Dang, V. (2012) Links between metabolism and cancer. Genes Dev., 26: 877-890.
PMid:22549953 PMCid:PMC3347786
4. Cairns, R.A., Harris, I.S. and Mak, T.W. (2011) Regulation of cancer cell metabolism. Nat. Rev. Cancer, 11: 85-95.
5. Frezza, C., Zheng, L., Tennant, D.A., Papkovsky, D.B., Hedley, B.A., Kalna, G., Watson, D.G. and Gottlieb, E. (2011) Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival. Available from:
6. Cardaci, S. and Ciriolo, M.R. (2012) TCA cycle defects and cancer: When metabolism tunes redox state. Int. J. Cell. Biol., 2012: 161837.
PMid:22888353 PMCid:PMC3408673
7. Anastasiou, D., Poulogiannis, G., Asara, J.M., Boxer, M.B., Jiang, J.K., Shen, M., Bellinger, G., Sasaki, A.T., Locasale, J.W., Auld, D.S., Thomas, C.J., Vander Heiden, M.G. and Cantley, L.C. (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science, 334(6060): 1278-1283.
8. Ying, H., Kimmelman, A.C., Lyssiotis, C.A., Hua, S., Chu, G.C., Fletcher-Sananikone, E., Locasale, J.W., Son, J., Zhang, H., Coloff, J.L., Yan, H., Wang, W., Chen, S., Viale, A., Zheng, H., Paik, J.H., Lim, C., Guimaraes, A.R., Martin, E.S., Chang, J., Hezel, A.F., Perry, S.R., Hu, J., Gan, B., Xiao, Y., Asara, J.M., Weissleder, R., Wang, Y.A., Chin, L., Cantley, L.C. and DePinho, R.A. (2012) Oncogenic K-ras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell, 149: 656-670.
PMid:22541435 PMCid:PMC3472002
9. Wang, X., Li, X.J., Zhang, X.Q., Fan, R.T., Gu, H., Shi, Y.G. and Liu, H.T. (2015) Glucose-6-phosphate dehydrogenase expression is correlated with poor clinical prognosis in esophagealsquamous cell carcinoma. Eur. J. Surg. Oncol., 41(10): 1293-1299.
10. Ohkawa, H., Ohishi, N. and Yagi, K. (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 95: 351-358.
11. Ellman, G.L. (1959) Tissue sulfhydryl groups. Arch. Biochem. Biophys., 82: 70-77.
12. Neibes, P. (1972) Determination of enzymes and degradation products of glycosaminoglycans metabolism in the serum of healthy and varicose subjects. Clin. Chem. Acta, 42: 399-408.
13. Lowry, O.H., Rosenberg, N.J., Farr, A.L. and Randall, R.J. (1951) Protein measurement with folin phenol reagent. J. Biol. Chem., 193: 265-275.
14. Brandstrup, N., Kirk, J.E. and Bruni, C. (1957) Determination of hexokinase in tissues. J. Gerontol., 12: 166-171.
15. Koida, H. and Oda, T. (1959) Pathological occurence of glucose-6-phosphatase in liver disease. Clin. Chem. Acta, 4: 554-561.
16. Gancedo, J.M. and Gancedo, C. (1971) Fructose-1, 6-bisphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase from fermenting yeast. Arch. Microbiol., 76: 132-138.
17. Ellis, H.A. and Kirkman, H.N. (1961) A colorimetric method for assay of erythrocyte glucose-6-phosphate dehydrogenase. Proc. Soc. Exp. Biol. Med., 106: 607-609.
18. Snedecor, G.W. and Cochran, W.G. (1994) Statistical Methods. 8th ed. Ames: Iowa State University Press.
19. Karayannopoulou, M., Fytianou, A., Assaloumidis, N., Psalla, D., Savvas, I. and Kaldrymidou, E. (2013b) Lipid peroxidation in neoplastic tissue of dogs with mammary cancer fed with different kinds of diet. Turk. J. Vet. Anim. Sci., 37: 449-453.
20. Macotpet, A., Suksawat, F., Sukon, P., Pimpakdee, K., Pattarapanwichien, E., Tangrassameeprasert, R. and Boonsirl, P. (2013) Oxidative stress in cancer-bearing dogs assessed by measuring serum malondialdehyde. BMC Vet. Res., 9: 101.
PMid:23663727 PMCid:PMC3654958
21. Karayannopoulou, M., Fytianou, A., Assaloumidis, N., Psalla, D., Constantinidis, T.C., Kaldrymidou, E. and Koutinas, A.F. (2013a) Markers of lipid peroxidation and α-tocopherol levels in the blood and neoplastic tissue of dogs with malignant mammary gland tumors. Vet. Clin. Pathol., 42(3): 323-328.
22. Szczubiał, M., Kankofer, M., Lopuszyński, W., Dabrowski, R. and Lipko, J. (2004) Oxidative stress parameters in bitches with mammary gland tumours. J. Vet. Med. A., 51(7-8): 336-340.
23. Szczubiał, M., Kankofer, M., Albera, E., Łopuszyński, W. and Dąbrowski, R. (2008) Oxidative/antioxidative status of blood plasma in bitches with mammary gland tumours. B. Vet. I. Pulawy, 52: 255-259.
24. Schumcaker, P.T. (2006) Reactive oxygen species in cancer cells: Live by the sword, die by the sword. Cancer Cell, 10(3): 175-176.
25. Leonel, C., Gabriela, B., Jardim, B.V., Moschetta, M.G., Regiani, V.R., Oliveira, J.G. and Zuccari, D.A. (2014) Expression of glutathione, glutathione peroxidase and glutathione S-transferase pi in canine mammary tumors. BMC Vet. Res., 10: 49.
PMid:24565113 PMCid:PMC3975948
26. Fogg, V.C., Lanning, N.J. and MacKeigan, J.P. (2011) Mitochondria in cancer: At the crossroads of life and death. Chin. J. Cancer, 30(8): 526-539.
PMid:21801601 PMCid:PMC3336361
27. Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of cancer: The next generation. Cell, 144: 646-674.
28. Alvarez, J.V., Belka, G.K., Pan, T.C. and Chen, C.C. (2014) Oncogene pathway activation in mammary tumors dictates [18-F] FDG-PET uptake. Cancer Res., 74(24): 7583-7598.
PMid:25239452 PMCid:PMC4342047
29. Macheda, M.L., Rogers, S. and Best, J.D. (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J. Cell. Physiol., 202(3): 654-662.
30. Smith, T. (2000) Mammalian hexokinase and their abnormal expression in cancer. Br. J. Biomed. Sci., 57(2): 170-178.
31. Bryson, J.M. (2002) Increased hexokinase activity of either ectopic or endogenous origin protects renal epithelial cells against oxidant induced cell death. J. Biol. Chem., 277: 11392-11400.
32. Jagadeesan, A.J., Langeswaran, K., Kumar, S.G., Revathy, R. and Balasubramanian, M.P. (2013) Chemopreventive potential of diogenin on modulating glycoproteins, TCA cycle enzymes, carbohydrate metabolising enzymes and biotransformation enzymes against N-methyl-N-nitrosourea induced mammary carcinogenesis. Int. J. Pharm. Sci., 5(4): 572-582.
33. DeBeradinis, R.J., Sayed, N., Ditsworth, D. and Thompson, C.B. (2008) Brick by brick: Metabolism and tumor cell growth. Curr. Opin. Genet. Dev., 18: 54-61.
PMid:18387799 PMCid:PMC2476215