| 
              
              
              Open Access  
 
              
              
              
              Research 
              
              
(Published 
				online: 03-12-2016)  
              3. 
				
              Ocimum sanctum
              
              Linn. stimulate the expression of choline acetyltransferase on the 
              human cerebral microvascular endothelial cells -
              
              
              Dwi Liliek Kusindarta, Hevi Wihadmadyatami
              
              
              and Aris Haryanto 
              
              Veterinary World, 9(12): 1348-1354   
              
   
                
                
doi: 
              
				
				10.14202/vetworld.2016.1348-1354 
                
                
                Dwi Liliek Kusindarta:
                
              
                Department of 
                Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, 
                Yogyakarta, Indonesia; indarta@ugm.ac.id 
              
              Hevi Wihadmadyatami:
              
              
              Department of 
              Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, 
              Yogyakarta, Indonesia; heviwihadmadyatami@ugm.ac.id 
              
              Aris Haryanto:
              
              
              Department of 
              Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah 
              Mada, Yogyakarta, Indonesia; arisharyanto@yahoo.com   
              
              Received: 12-06-2016, Accepted: 13-10-2016, Published online: 
              03-12-2016   
				
              	
              	Corresponding author: 
              	
				Dwi Liliek 
                Kusindarta, e-mail: indarta@ugm.ac.id 
 
              Citation: 
              
              Kusindarta DL, Wihadmadyatami H, Haryanto A (2016) Ocimum 
              sanctum Linn. stimulate the expression of choline 
              acetyltransferase on the human cerebral microvascular endothelial 
              cells, Veterinary World, 9(12): 1348-1354. 
 
              
				Abstract 
 
              Aim: 
              This research 
              was conducted to identify the expression of choline 
              acetyltransferase (ChAT) in human cerebral microvascular 
              endothelial cells (HCMECs) and to clarify the capability of 
              Ocimum sanctum Linn. ethanolic extract to stimulate the 
              presence of ChAT in the aging HCMECs.  
              Materials and 
              Methods: 
              In this study, we 
              perform an in vitro analysis some in the presence of an 
              ethanolic extract of O. sanctum Linn. as a stimulator for 
              the ChAT expression. HCMECs are divided become two groups, the 
              first is in low passage cells as a model of young aged and the 
              second is in a high passage as a model of aging. Furthermore to 
              analysis the expression of ChAT without and with extract 
              treatments, immunocytochemistry and flow cytometry analysis were 
              performed. In addition, ChAT sandwich enzyme-linked immunosorbent 
              assay is developed to detect the increasing activity of the ChAT 
              under normal, and aging HCMECs on the condition treated and 
              untreated cells.  
              Results: 
              In our in 
              vitro models using HCMECs, we found that ChAT is expressed 
              throughout intracytoplasmic areas. On the status of aging, the 
              ethanolic extract from O. sanctum Linn. is capable to 
              stimulate and restore the expression of ChAT. The increasing of 
              ChAT expression is in line with the increasing activity of this 
              enzyme on the aging treated HCMECs.  
              Conclusions:
              Our 
              observation indicates that HCMECs is one of the noncholinergic 
              cells which is produced ChAT. The administrated of O. sanctum
              Linn. ethanolic extract may stimulate and restore the 
              expression of ChAT on the deteriorating cells of HCMECs, thus its 
              may give nerve protection and help the production of 
              acetylcholine.  
              
              Keywords: 
              
              choline acetyltransferase, human cerebral microvascular 
              endothelial cells, Ocimum sanctum Linn. 
 
              References 
 
                
                  | 1. Glisky El (2007) Changes in cognitive function in human 
                  aging. In Riddle DR, editor. Brain Aging : Models, Methods, 
                  and Mechanism. Boca Raton (FL): CRC Press/Taylor & Francis. 
                  Chapter I. |  
                  |  |  
                  | 2. Prince, M. and Jackson, J. (2009) World Alzheimer Report 
                  2009. Alzheimer's Disease International, London. p1-96. PMCid:PMC2834500
 |  
                  |  |  
                  | 3. Takeuchi, T., Duszkiewicz, A.J. and Morris, R.G. (2014) The 
                  synaptic plasticity and memory hypothesis: Encoding, storage 
                  and persistence. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 
                  369(1633): 20130288. https://doi.org/10.1098/rstb.2013.0288
 PMid:24298167 PMCid:PMC3843897
 |  
                  |  |  
                  | 4. Mangina, C.A. and Sokolov, E.N. (2006) Neuronal plasticity 
                  in memory and learning abilities: Theoretical position and 
                  selective review. Int. J. Psychophysiol., 60(3): 203-214. https://doi.org/10.1016/j.ijpsycho.2005.11.004
 PMid:16387375
 |  
                  |  |  
                  | 5. Blokland, A. (1995) Acetylcholine: A neurotransmitter for 
                  learning and memory? Brain Res. Rev., 21(3): 285-300. https://doi.org/10.1016/0165-0173(95)00016-X
 |  
                  |  |  
                  | 6. Hasselmo, M.E. (2006) The role of acetylcholine in learning 
                  and memory. Curr. Opin. Neurobiol., 16(6): 710-715. https://doi.org/10.1016/j.conb.2006.09.002
 PMid:17011181 PMCid:PMC2659740
 |  
                  |  |  
                  | 7. Nunes-Tavares, N., Santos, L.E., Stutz, B., Brito-Moreira, 
                  J., Klein, W.L., Ferreiram S.T. and de Mello, F.G. (2012) 
                  Inhibition of choline acetyltransferase as a mechanism for 
                  cholinergic dysfunction induced by amyloid-? peptide oligomers. 
                  J. Biol. Chem., 287(23): 19377-19385. https://doi.org/10.1074/jbc.M111.321448
 PMid:22505713 PMCid:PMC3365976
 |  
                  |  |  
                  | 8. Oda, Y. (1999) Choline acetyltransferase: The structure, 
                  distribution and pathologic changes in the central nervous 
                  system. Pathol. Int., 49(11): 921-937. https://doi.org/10.1046/j.1440-1827.1999.00977.x
 |  
                  |  |  
                  | 9. Ichikawa, T., Ajiki, K., Matsuura, J. and Misawa, H. (1997) 
                  Localization of two cholinergic markers, choline 
                  acetyltransferase and vesicular acetylcholine transporter in 
                  the central nervous system of the rat: In situ hybridization 
                  histochemistry and immunohistochemistry. J. Chem. Neuroanat., 
                  13(1): 23-39. https://doi.org/10.1016/S0891-0618(97)00021-5
 |  
                  |  |  
                  | 10. Tang, F., Nag, S., Shiu, S.Y.W. and Pang, S.F. (2002) The 
                  effects of melatonin and Ginkgo biloba extract on memory loss 
                  and choline acetyltransferase activities in the brain of rats 
                  infused intracerebroventricularly with h-amyloid 1-40. Life 
                  Sci., 71: 2625-2631. https://doi.org/10.1016/S0024-3205(02)02105-7
 |  
                  |  |  
                  | 11. Raut, S., Rege, N., Malve, H. and Marathe, P. (2014) 
                  Effect of combination of Phyllanthus emblica, Tinospora 
                  cordifolia, and Ocimum sanctum on spatial learning and memory 
                  in rats. J. Ayurveda Integr. Med., 5(4): 209. https://doi.org/10.4103/0975-9476.146564
 |  
                  |  |  
                  | 12. Kadian, R., Parle, M., Noida, G. and Division, P. (2012) 
                  Therapeutic potential and phytopharmacology of tulsi. Int. J. 
                  Pharm. Life Sci., 3(7): 1858-1867. |  
                  |  |  
                  | 13. Gupta, S.K., Prakash, J. and Srivastava, S. (2002) 
                  Validation of traditional claim of Tulsi, Ocimum sanctum Linn. 
                  As a medicinal plant. Indian J. Exp. Biol., 40(7): 765-773. PMid:12597545
 |  
                  |  |  
                  | 14. Ramesh, B. and Satakopan, V.N. (2010) Antioxidant 
                  activities of hydroalcoholic extract of Ocimum sanctum against 
                  cadmium induced toxicity in rats. Indian J. Clin. Biochem., 
                  25(3): 307-310. https://doi.org/10.1007/s12291-010-0039-5
 PMid:21731203 PMCid:PMC3001835
 |  
                  |  |  
                  | 15. Uma, D.P. (2001) Radioprotective, anticarcinogenic and 
                  antioxidant properties of the Indian holy basil, Ocimum 
                  sanctum (Tulasi). Indian J. Exp. Biol., 39(3): 185-190. |  
                  |  |  
                  | 16. Jagetia, G.C. (2007) Radioprotective potential of plants 
                  and herbs against the effects of ionizing radiation. J. Clin. 
                  Biochem. Nutr., 40(2): 74-81. https://doi.org/10.3164/jcbn.40.74
 PMid:18188408 PMCid:PMC2127223
 |  
                  |  |  
                  | 17. Adhvaryu, M.R., Reddy, N. and Parabia, M.H. (2008) 
                  Anti-tumor activity of four Ayurvedic herbs in Dalton lymphoma 
                  ascites bearing mice and their short-term in vitro 
                  cytotoxicity on DLA-cell-line. Afr. J. Tradit. Complement. 
                  Altern. Med. Afr. Networks Ethnomed., 5(4): 409-418. https://doi.org/10.4314/ajtcam.v5i4.31297
 |  
                  |  |  
                  | 18. Venuprasad, M.P., Kumar, K.H. and Khanum, F. (2013) 
                  Neuroprotective effects of hydroalcoholic extract of Ocimum 
                  sanctum against H2O2 induced neuronal cell damage in SH-SY5Y 
                  cells via its antioxidative defence mechanism. Neurochem. 
                  Res., 38(10): 2190-2200. https://doi.org/10.1007/s11064-013-1128-7
 PMid:23996399
 |  
                  |  |  
                  | 19. Porter, N.M., Thibault, O., Thibault, V., Chen, K.C. and 
                  Landfield, P.W. (1997) Calcium channel density and hippocampal 
                  cell death with age in long-term culture. J. Neurosci., 
                  17(14): 5629-5639. PMid:9204944
 |  
                  |  |  
                  | 20. Schneider, E.L., Sternberg, H., Tice, R.R., Senula, G.C., 
                  Kram, D., Smith, J.R. and Bynum, G. (1979) Cellular 
                  replication and aging. Mech. Ageing Dev., 9: 313-324. https://doi.org/10.1016/0047-6374(79)90108-8
 |  
                  |  |  
                  | 21. Norgall, S., Papoutsi, M., Rössler, J., Schweigerer, L., 
                  Wilting, J. and Weich, H.A. (2007) Elevated expression of 
                  VEGFR-3 in lymphatic endothelial cells from lymphangiomas. BMC 
                  Cancer, 7: 105. https://doi.org/10.1186/1471-2407-7-105
 PMid:17584927 PMCid:PMC1925108
 |  
                  |  |  
                  | 22. Hajra, L., Evans, A.I., Chen, M., Hyduk, S.J., Collins, T. 
                  and Cybulsky, M.I. (2000) The NF-kappa B signal transduction 
                  pathway in aortic endothelial cells is primed for activation 
                  in regions predisposed to atherosclerotic lesion formation. 
                  Proc. Natl. Acad. Sci. U S A., 97(16): 9052-9057. https://doi.org/10.1073/pnas.97.16.9052
 |  
                  |  |  
                  | 23. Bennett, J.S. (2005) Structure and function of the 
                  platelet integrin alphaIIbbeta3. J. Clin. Invest., 115(12): 
                  3363-3369. https://doi.org/10.1172/JCI26989
 PMid:16322781 PMCid:PMC1297263
 |  
                  |  |  
                  | 24. Cohen, M. (2014) Tulsi-Ocimum sanctum: A herb for all 
                  reasons. J. Ayurveda Integr. Med., 5(4): 251. https://doi.org/10.4103/0975-9476.146554
 |  
                  |  |  
                  | 25. Devi, P.U., Bisht, K.S. and Vinitha, M. (1998) A 
                  comparative study of radioprotection by Ocimum flavonoids and 
                  synthetic aminothiol protectors in the mouse. Br. J. Radiol., 
                  71(847): 782-784. https://doi.org/10.1259/bjr.71.847.9771390
 PMid:9771390
 |  
                  |  |  
                  | 26. Mondal, S., Mirdha, B.R. and Mahapatra, S.C. (2009) The 
                  science behind sacredness of Tulsi (Ocimum sanctum Linn.). 
                  Indian J. Physiol. Pharmacol., 53(4): 291-306. PMid:20509321
 |  
                  |  |  
                  | 27. Weksler, B., Romero, I.A. and Couraud, P.O. (2013) The 
                  hCMEC/D3 cell line as a model of the human blood brain 
                  barrier. Fluids Barriers CNS., 10(1): 16. https://doi.org/10.1186/2045-8118-10-16
 |  
                  |  |  
                  | 28. Janzer, R.C. and Raff, M.C. (1987) Astrocytes induce 
                  blood-brain barrier properties in endothelial cells. Nature, 
                  325: 253-257. https://doi.org/10.1038/325253a0
 PMid:3543687
 |  
                  |  |  
                  | 29. Cabezas, R., Avila, M., Gonzalez, J., El-Bachá, R.S., Báez, 
                  E., García-Segura, L.M., Coronel, J.C.J., Capani, F., 
                  Cardona-Gomez, G.P. and Barreto, G.E. (2014) Astrocytic 
                  modulation of blood brain barrier: Perspectives on Parkinson's 
                  disease. Front. Cell. Neurosci., 8: 211. https://doi.org/10.3389/fncel.2014.00211
 PMid:25136294 PMCid:PMC4120694
 |  
                  |  |  
                  | 30. Abbott, N.J., Rönnbäck, L. and Hansson, E. (2006) 
                  Astrocyte–endothelial interactions at the blood-brain barrier. 
                  Nat. Rev. Neurosci., 7(1): 41-53. https://doi.org/10.1038/nrn1824
 PMid:16371949
 |  
                  |  |  
                  | 31. Badder S, Klein J. Diener M (2014) Choline 
                  acetyltransferase and organic cation transportes are 
                  responsible for synthesis and propionate-induced release of 
                  acetylcholine in colon epithelium. Eur. J. Pharmacol 733:23-33 
                  . https://doi.org/10.1016/j.ejphar.2014.03.036
 PMid:24698650
 |  
                  |  |  
                  | 32. Lips, K.S., Lührmann, A., Tschernig, T., Stoeger, T., 
                  Alessandrini, F., Grau, V. Haberberger RV, Kopesell H, Pabst 
                  R, and Kummer W (2007) Down-regulation of the non-neuronal 
                  acetylcholine synthesis and release machinery in acute 
                  allergic airway inflammation of rat and mouse. Life Sci., 
                  80(24-25): 2263-2269. https://doi.org/10.1016/j.lfs.2007.01.026
 PMid:17328924
 |  
                  |  |  
                  | 33. Hannan, J.M.A., Marenah, L., Ali, L., Rokeya, B., Flatt, 
                  P.R. and Abdel-Wahab, Y.H.A. (2006) Ocimum sanctum leaf 
                  extracts stimulate insulin secretion from perfused pancreas, 
                  isolated islets and clonal pancreatic beta-cells. J. 
                  Endocrinol., 189(1): 127-136. https://doi.org/10.1677/joe.1.06615
 PMid:16614387
 |  
                  |  |  
                  | 34. Khanna, A., Shukla, P. and Tabassum, S. (2011) Role of 
                  Ocimum sanctum as a genoprotective agent on chlorpyrifos-induced 
                  genotoxicity. Toxicol. Int., 18(1): 9-13. https://doi.org/10.4103/0971-6580.75845
 PMid:21430913 PMCid:PMC3052594
 |  
                  |  |  
                  | 35. Bader, S., Klein, J. and Diener, M. (2014) Choline 
                  acetyltransferase and organic cation transporters are 
                  responsible for synthesis and propionate-induced release of 
                  acetylcholine in colon epithelium. Eur. J. Pharmacol., 733(1): 
                  23-33. https://doi.org/10.1016/j.ejphar.2014.03.036
 PMid:24698650
 |  
                  |  |  
                  | 36. Lips, K.S., Brüggmann, D., Pfeil, U., Vollerthun, R., 
                  Grando, S.A. and Kummer, W. (2005) Nicotinic acetylcholine 
                  receptors in rat and human placenta. Placenta, 26(10): 
                  735-746. https://doi.org/10.1016/j.placenta.2004.10.009
 PMid:16226123
 |  
                  |  |  
                  | 37. Lips, K.S., Pfeil, U., Reiners, K., Rimasch, C., 
                  Kuchelmeister, K., Braun-Dullaeus, R.C., Haberberger, R.V., 
                  Schmidt, R. and Kummer, W. (2016) Expression of the 
                  high-affinity choline transporter CHT1 in rat and human 
                  arteries. J. Histochem. Cytochem., 51(12): 1645-1654. https://doi.org/10.1177/002215540305101208
 |  
                  |  |  
                  | 38. Armstrong, D.M. (1986) Ultrastructural characterization of 
                  choline acetyltransferase-containing neurons in the basal 
                  forebrain of rat: Evidence for a cholinergic innervation of 
                  intracerebral blood vessels. J. Comp. Neurol., 250(1): 81-92. https://doi.org/10.1002/cne.902500108
 PMid:3734170
 |  
                  |  |  
                  | 39. Kirkpatrick, C.J., Bittinger, F., Nozadze, K. and Wessler, 
                  I. (2003) Expression and function of the non-neuronal 
                  cholinergic system in endothelial cells. Life Sci., 72(18-19): 
                  2111-2116. https://doi.org/10.1016/S0024-3205(03)00069-9
 |  
                  |  |  
                  | 40. Lan, C.T., Shieh, J.Y., Wen, C.Y., Tan, C.K. and Ling, E.A. 
                  (1996) Ultrastructural localization of acetylcholinesterase 
                  and choline acetyltransferase in oligodendrocytes, glioblasts 
                  and vascular endothelial cells in the external cuneate nucleus 
                  of the gerbil. Anat. Embryol., 194(2): 177-185. https://doi.org/10.1007/bf00195011
 |  
                  |  |  
                  | 41. Arnerić, S.P., Honig, M.A., Milner, T.A., Greco, S., 
                  Iadecola, C. and Reis, D.J. (1988) Neuronal and endothelial 
                  sites of acetylcholine synthesis and release associated with 
                  microvessels in rat cerebral cortex: Ultrastructural and 
                  neurochemical studies. Brain Res., 454(1-2): 11-30. https://doi.org/10.1016/0006-8993(88)90799-8
 |  
                  |  |  
                  | 42. Yasuhara, O., Matsuo, A., Bellier, J.P. and Aimi, Y. 
                  (2006) Demonstration of choline acetyltransferase of a 
                  peripheral type in the rat heart. J. Histochem. Cytochem., 
                  55(3): 287-299. https://doi.org/10.1369/jhc.6A7092.2006
 PMid:17142806
 |  
                  |  |  
                  | 43. Iwamoto, K., Mata, D., Linn, D.M. and Linn, C.L. (2013) 
                  Neuroprotection of rat retinal ganglion cells mediated through 
                  alpha7 nicotinic acetylcholine receptors. Neuroscience, 237: 
                  184-198. https://doi.org/10.1016/j.neuroscience.2013.02.003
 PMid:23402849 PMCid:PMC3609885
 |  |