| 
              
              
              Open Access  
 
              
              
              
              Research 
              
              
(Published 
				online: 
				03-02-2016)  
              
              1. 
				
				Effect of heat shock protein 70 
				polymorphism on thermotolerance in Tharparkar cattle -
				
				
				Sandip Bhat, Pushpendra Kumar, Neeraj Kashyap, Bharti Deshmukh, 
				Mahesh Shivanand Dige, Bharat Bhushan, Anuj Chauhan, Amit Kumar 
				and Gyanendra Singh 
              
              Veterinary World, 9(2): 113-117   
              
   
                
                
doi: 
              
				
				10.14202/vetworld.2016.113-117 
                
				  
				
				Sandip Bhat: 
				
				Division of Animal Genetics, Indian Veterinary Research 
				Institute, Izatnagar, Uttar Pradesh, India; sandipivri@gmail.com 
				
				Pushpendra Kumar: 
				
				Division of Animal Genetics, Indian Veterinary Research 
				Institute, Izatnagar, Uttar Pradesh, India; pushpendra64@gmail.com 
				
				Neeraj Kashyap: 
				
				Division of Animal Genetics, Indian Veterinary Research 
				Institute, Izatnagar, Uttar Pradesh, India; neeraj.vety@gmail.com 
				
				Bharti Deshmukh: 
				
				Department of Animal Genetics and Breeding, Govind Ballabh Pant 
				University of Agriculture and Technology, Pantnagar, Uttarakhand, 
				India; bharti.vet@gmail.com 
				
				Mahesh Shivanand Dige: 
				
				Division of Animal Genetics, Indian Veterinary Research 
				Institute, Izatnagar, Uttar Pradesh, India; maheshdige@gmail.com 
				
				Bharat Bhushan: 
				
				Division of Animal Genetics, Indian Veterinary Research 
				Institute, Izatnagar, Uttar Pradesh, India; bbhushan_ivri2003@yahoo.co.in 
				
				Anuj Chauhan: 
				
				Division of Animal Genetics, Indian Veterinary Research 
				Institute, Izatnagar, Uttar Pradesh, India; anuj_vet99@rediffmail.com 
				
				Amit Kumar: 
				
				Division of Animal Genetics, Indian Veterinary Research 
				Institute, Izatnagar, Uttar Pradesh, India; vetamitchandan07@gmail.com 
				
				Gyanendra Singh: 
				
				Division of Physiology and Climatology, Indian Veterinary 
				Research Institute, Izatnagar, Uttar Pradesh, India; gyanendra@ivri.res.in   
				
				Received: 17-05-2015, Revised: 05-12-2015, Accepted: 18-12-2015, 
				Published online: 03-02-2016 
				  
				
              	
              	Corresponding author:Sandip Bhat, e-mail: sandipivri@gmail.com 
 
              Citation: Bhat S, Kumar P, Kashyap N, Deshmukh B, Dige MS, Bhushan B, 
				Chauhan A, Kumar A, Singh G (2016) Effect of heat shock protein 
				70 polymorphism on thermotolerance in Tharparkar cattle, 
				
				
				Veterinary World 9(2): 
				113-117. 
 
              
				Abstract 
 
				
				
				Aim: 
				
				Out of various members of heat shock protein (HSP) superfamily 
				which act a molecular chaperon by binding to the denaturing 
				protein thus stabilizing them and preserving their activity, 
				HSP70 are of major importance in thermotolerance development. 
				Thus, present investigation aimed at a screening of HSP70 gene 
				for polymorphisms and possible differences in thermotolerance in 
				Tharparkar breed of cattle. 
				
				
				Materials and Methods: 
				
				A 295 bp fragment of HSP70 gene was subjected to polymerase 
				chain reaction-singlestrand conformation polymorphism (SSCP) 
				followed by sequencing of different SSCP patterns in 64 
				Tharparkar cattle. A comparative thermotolerance of identified 
				genotypes was analyzed using heat tolerance coefficients (HTCs) 
				of animals for different seasons. 
				
				
				Results: 
				
				Three SSCP patterns and consequently two alleles namely A and B 
				were documented in one fragment of HSP70 gene. On sequencing, 
				one single-nucleotide polymorphism with G > T substitution was 
				found at a position that led to a change of amino acid aspartate 
				to tyrosine in allele A. It was found that in maintaining near 
				normal average rectal temperature, genotype AA was superior 
				(p≤0.01). Genotype AA, thus, was found to be most thermotolerant 
				genotype with the highest HTC (p≤0.01). 
				
				
				Conclusion: 
				
				The polymorphism at HSP70 is expected to be a potent determinant 
				for heat tolerance in cattle, which may aid in selection for 
				thermotolerance in cattle. 
				
				Keywords: 
				
				cattle, heat tolerance, heat shock protein 70, polymorphism, 
				Tharparkar. 
 
              References 
 
				
					| 1. David, K., Murgo, A.J. and Faith, R.E. (1990) Effects of 
					stress on the immune system. Immunol. Today, 11(10): 348. |  
					|  |  
					| 2. Tao, S., Monteiro, A., Thompson, I., Hayen, M. and Dahl, 
					G. (2012) Effect of late-gestation maternal heat stress on 
					growth and immune function of dairy calves. J. Dairy Sci., 
					95(12): 7128-7136. http://dx.doi.org/10.3168/jds.2012-5697
 PMid:23021751
 |  
					|  |  
					| 3. Boonkum, W., Misztal, I., Duangjinda, M., Pattarajinda, 
					V., Tumwasorn, S. and Sanpote, J. (2011) Genetic effects of 
					heat stress on milk yield of Thai Holstein crossbreds. J. 
					Dairy Sci., 94(1): 487-492. http://dx.doi.org/10.3168/jds.2010-3421
 PMid:21183060
 |  
					|  |  
					| 4. Bernabucci, U., Biffani, S., Buggiotti, L., Vitali, A., 
					Lacetera, N. and Nardone, A. (2014) The effects of heat 
					stress in Italian Holstein dairy cattle. J. Dairy Sci., 
					97(1): 471-486. http://dx.doi.org/10.3168/jds.2013-6611
 PMid:24210494
 |  
					|  |  
					| 5. Avenda-o-Reyes, L., Fuquay, J.W., Moore, R.B., Liu, Z., 
					Clark, B.L. and Vierhout, C. (2010) Relationship between 
					accumulated heat stress during the dry period, body 
					condition score, and reproduction parameters of Holstein 
					cows in tropical conditions. Trop. Anim. Health Prod., 
					42(2): 265-273. http://dx.doi.org/10.1007/s11250-009-9415-7
 PMid:19680774
 |  
					|  |  
					| 6. Ferreira, R., Ayres, H., Chiaratti, M., Ferraz, M., 
					Araújo, A., Rodrigues, C., Watanabe, Y., Vireque, A., 
					Joaquim, D. and Smith, L. (2011) The low fertility of 
					repeat-breeder cows during summer heat stress is related to 
					a low oocyte competence to develop into blastocysts. J. 
					Dairy Sci., 94(5): 2383-2392. http://dx.doi.org/10.3168/jds.2010-3904
 PMid:21524528
 |  
					|  |  
					| 7. Carroll, J., Burdick, N., Chase, C., Coleman, S. and 
					Spiers, D. (2012) Influence of environmental temperature on 
					the physiological, endocrine, and immune responses in 
					livestock exposed to a provocative immune challenge. Domest. 
					Anim. Endocrinol., 43(2): 146-153. http://dx.doi.org/10.1016/j.domaniend.2011.12.008
 PMid:22425434
 |  
					|  |  
					| 8. Dikmen, S., Alava, E., Pontes, E., Fear, J.M., Dikmen, 
					B.Y., Olson, T.A. and Hansen, P.J. (2008) Differences in 
					thermoregulatory ability between slick-haired and wild-type 
					lactating Holstein cows in response to acute heat stress. J. 
					Dairy Sci., 91(9): 3395-3402. http://dx.doi.org/10.3168/jds.2008-1072
 PMid:18765598
 |  
					|  |  
					| 9. Liu, Y.X., Li, D.Q., Li, H.X., Zhou, X. and Wang, G.L. 
					(2011) A novel SNP of the ATP1A1 gene is associated with 
					heat tolerance traits in dairy cows. Mol. Biol. Rep., 38(1): 
					83-88. http://dx.doi.org/10.1007/s11033-010-0080-8
 PMid:20336380
 |  
					|  |  
					| 10. Kashyap, N., Kumar, P., Deshmukh, B., Dige, M.S., Sarkar, 
					M., Kumar, A., Chauhan, A. and Singh, G. (2014) Influence of 
					ambient temperature and humidity on ATP I Al gene expression 
					in Tharparkar and Vrindavani cattle. Indian J. Anim. Res., 
					48(6): 541-544. http://dx.doi.org/10.5958/0976-0555.2014.00028.4
 |  
					|  |  
					| 11. Wang, Z., Wang, G., Huang, J., Li, Q., Wang, C. and 
					Zhong, J. (2011) Novel SNPs in the ATP1B2 gene and their 
					associations with milk yield, milk composition and 
					heat-resistance traits in Chinese Holstein cows. Mol. Biol. 
					Rep., 38(3): 1749-1755. http://dx.doi.org/10.1007/s11033-010-0289-6
 PMid:20842439
 |  
					|  |  
					| 12. Yang, M., Tan, H., Yang, Q.L., Wang, F., Yao, H.L., Wei, 
					Q.Y., Tanguay, R.M. and Wu, T.C. (2006) Association of HSP70 
					polymorphisms with risk of noise-induced hearing loss in 
					Chinese automobile workers. Cell Stress Chaperon, 11: 
					233-239. http://dx.doi.org/10.1379/CSC-192R.1
 PMCid:PMC1576471
 |  
					|  |  
					| 13. Ellis, R.J. (1987) Proteins as molecular chaperones. 
					Nat. Insects, 328: 378-379. http://dx.doi.org/10.1038/328378a0
 |  
					|  |  
					| 14. Lindquist, S. and Craig, D. (1988) The heat shock 
					proteins. Annu. Rev. Genet., 22: 631-677. http://dx.doi.org/10.1146/annurev.ge.22.120188.003215
 PMid:2853609
 |  
					|  |  
					| 15. Parsell, D.A. and Lindquist, S. (1993) The function of 
					heat-shock proteins in stress tolerance: Degradation and 
					reactivation of damaged proteins. Annu. Rev. Genet., 27: 
					437-496. http://dx.doi.org/10.1146/annurev.ge.27.120193.002253
 PMid:8122909
 |  
					|  |  
					| 16. Neuer, A., Spandorfer, S.D., Giraldo, P., Dieterle, S., 
					Rosenwaks1, Z. and Witkin, S.S. (2000) The role of heat 
					shock proteins in reproduction. Eur. Soc. Hum. Reprod. 
					Embryol., 6(2): 149-159. http://dx.doi.org/10.1093/humupd/6.2.149
 |  
					|  |  
					| 17. Garrido, C., Gurbuxani, S., Ravagnan, L. and Kroemer, G. 
					(2001) Heat shock proteins: Endogenous modulators of 
					apoptotic cell death. Biochem. Biophys. Res. Commun., 286: 
					433-442. http://dx.doi.org/10.1006/bbrc.2001.5427
 PMid:11511077
 |  
					|  |  
					| 18. Tsuruma, T., Yaagihashi, A., Matsuno, T., Zou, X.N. and 
					Hirata, K. (1996) The heat shock protein 70 family reduces 
					ischemia reperfusion injury in small intestine. Trans. 
					Process, 28: 2629-2630. |  
					|  |  
					| 19. Yenari, M.A., Gffard, R.G., Sapolsky, R.N. and 
					Steinberg, G.K. (1999) The neuroprotective potential of heat 
					shock protein 70. Mol. Med. Today, 5: 525-531. http://dx.doi.org/10.1016/S1357-4310(99)01599-3
 |  
					|  |  
					| 20. Beck, F., Neuhafer, W. and Nuller, E. (2000) Molecular 
					chaperones in the kidney: Distribution, putative roles and 
					regulation. Am. J. Physiol., 279: F203-F215. |  
					|  |  
					| 21. Luft, J.E. and Disc, D.J. (1999) HSP 70 expression and 
					function during embryogenesis. Cell Stress Chaperon, 43: 
					162-170. http://dx.doi.org/10.1379/1466-1268(1999)004<0162:HEAFDE>2.3.CO;2
 |  
					|  |  
					| 22. Hansen, P.J. (2004) Physiological and cellular 
					adaptations of zebu cattle to thermal stress. Anim. Reprod. 
					Sci., 82: 349-360. http://dx.doi.org/10.1016/j.anireprosci.2004.04.011
 PMid:15271465
 |  
					|  |  
					| 23. Adamowicz, T., Pers, E. and Lechniak, D. (2005) A new 
					SNP in the 3' -UTR of the HSP 70-1 gene in Bos taurus and 
					Bos indicus. Biochem. Genet., 43: 623-627. http://dx.doi.org/10.1007/s10528-005-9119-2
 PMid:16382367
 |  
					|  |  
					| 24. Li, Q., Han, J., Du, F., Ju, Z., Huang, J., Wang, J., 
					Li, R., Wang, C. and Zhong, J. (2011) Novel SNPs in HSP70A1A 
					gene and the association of polymorphisms with thermo 
					tolerance traits and tissue specific expression in Chinese 
					Holstein cattle. Mol. Biol. Rep., 38(4): 2657-2663. http://dx.doi.org/10.1007/s11033-010-0407-5
 PMid:21082257
 |  
					|  |  
					| 25. Lamb, M., Okimoto, R., Broun, M. and Rosenkranes, C., 
					Jr. (2007) Associations between cattle breed and heat shock 
					protein 70 gene. Res. Ser., 545: 205-206. |  
					|  |  
					| 26. Green, M.R. and Sambrook, J. (2012) Molecular Cloning: A 
					Laboratory Manual. Cold Spring Harbor, New York, USA. |  
					|  |  
					| 27. Bassam, B.J., Caetano-Anollés, G. and Gresshoff, P.M. 
					(1991) Fast and sensitive silver staining of DNA in 
					polyacrylamide gels. Anal. Biochem., 196(1): 80-83. http://dx.doi.org/10.1016/0003-2697(91)90120-I
 |  
					|  |  
					| 28. McDowell, R.E., Hooven, N.W. and Camoens, J.K. (1976) 
					Effect of climate on performance of Holsteins in first 
					lactation. J. Dairy Sci., 59(5): 965-971. http://dx.doi.org/10.3168/jds.S0022-0302(76)84305-6
 |  
					|  |  
					| 29. Rhoad, A.O. (1944) The Iberia heat tolerance test for 
					cattle. Trop. Agric., 21(9): 162-164. |  
					|  |  
					| 30. Kregel, K.C. (2002) Invited review: Heat shock proteins: 
					Modifying factors in physiological stress responses and 
					acquired thermotolerance. J. Appl. Physiol., 92(5): 
					2177-2186. http://dx.doi.org/10.1152/japplphysiol.01267.2001
 PMid:11960972
 |  
					|  |  
					| 31. Omar, E.A., Kirrella, A.K., Fawzy, S.A. and El-Keraby, 
					F. (1996) Effect of water spray followed by forced 
					ventilation on some physiological status and milk production 
					of post-calving Friesian cows. Alex. J. Agric. Res., 41: 
					71-81. |  
					|  |  
					| 32. Basiricò, L., Morera, P., Primi, V., Lacetera, N., 
					Nardone, A. and Bernabucci, U. (2011) Cellular 
					thermotolerance is associated with heat shock protein 70.1 
					genetic polymorphisms in Holstein lactating cows. Cell 
					Stress Chaperon, 16(4): 441-448. http://dx.doi.org/10.1007/s12192-011-0257-7
 PMid:21274669 PMCid:PMC3118824
 |  
					|  |  
					| 33. Xiong, Q., Chai, J., Xiong, H., Li, W., Huang, T., Liu, 
					Y., Suo, X., Zhang, N., Li, X. and Jiang, S. (2013) 
					Association analysis of HSP70A1A haplotypes with heat 
					tolerance in Chinese Holstein cattle. Cell Stress Chaperon, 
					18(6): 711-718. http://dx.doi.org/10.1007/s12192-013-0421-3
 PMid:23543596 PMCid:PMC3789873
 |  |