Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access


Research (Published online: 08-02-2016)

5. Developmental neurotoxicity of monocrotophos and lead is linked to thyroid disruption - B. Kala Kumar, A. Gopala Reddy, A. Vamsi Krishna, S. S. Y. H. Quadri and P. Shiva Kumar

Veterinary World, 9(2): 133-141

 

 

   doi: 10.14202/vetworld.2016.133-141

 

 

B. Kala Kumar: Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science, Sri P.V. Narsimha Rao Telangana State University for Veterinary, Animal and Fishery Science, Hyderabad - 500 030, Telangana, India; bkalakumar@rediffmail.com

A. Gopala Reddy: Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science, Sri P.V. Narsimha Rao Telangana State University for Veterinary, Animal and Fishery Science, Hyderabad - 500 030, Telangana, India; gopalaredddy123@rediffmail.com

A. Vamsi Krishna: Department of Bio-technology, Ministry of Science & Technology, New Delhi, India; vk.addanki@nic.in

S. S. Y. H. Quadri: Department of Pathology, National Institute of Nutrition (ICMR), Hyderabad, Telangana, India; ssyhq@yahoo.com

P. Shiva Kumar: Sri P.V. Narsimha Rao Telangana State University for Veterinary, Animal and Fishery Science, Hyderabad - 500 030, Telangana, India; drshiva40@gmail.com

 

Received: 01-08-2015, Revised: 14-12-2015, Accepted: 25-12-2015, Published online: 08-02-2016

 

Corresponding author: P. Shiva Kumar, e-mail: drshiva40@gmail.com


Citation: Kumar BK, Reddy AG, Krishna AV, Quadri SSYH, Kumar PS (2016) Developmental neurotoxicity of monocrotophos and lead is linked to thyroid disruption, Veterinary World 9(2): 133-141.



Aim: A role of thyroid disruption in developmental neurotoxicity of monocrotophos (MCP) and lead is studied.

Materials and Methods: A total of 24 female rats after conception were randomized into four groups of six each and treated as follows: Group I - Sham was administered distilled water orally. Group II - A positive control was administered methyl methimazole at 0.02% orally in drinking water. Group III - MCP orally at 0.3 mg/kg and Group IV - Lead acetate at 0.2% orally in drinking water. The drug was administered from gestation day 3 through post-natal day 21 in all the groups. Acetylcholinesterase (AChE) inhibition, thyroid profile (thyroid stimulating hormone, T3 and T4), neurodevelopment (brain wet weights, DNA, RNA and protein), and neurobehavioral (elevated plus maze, photoactometry, and Morris water maze) parameters were assessed in pups. A histopathology of thyroid of dams and brain of progeny was conducted.

Results: Inhibition of AChE was <20%. Thyroid profile decreased in the treatment groups. Neurodevelopmental and neurobehavioral parameters did not reveal any significant changes. Thyroid architecture was affected significantly with MCP and lead. Cortical layers too were affected. The three layers of cerebellum either had abnormal arrangement or decreased cellularity in all treated groups relating to thyroid disruption.

Conclusion: MCP and lead might have affected the development of cerebrum and cerebellum via thyroid disruption leading to developmental neurotoxicity.

Keywords: behavioral alterations, developmental neurotoxicity, lead, monocrotophos, thyroid disruption.



1. Ullah, S., Ullah, N., Rahman, K., Khan, T.M., Jadoon, M.A. and Ahmad, T. (2014) Study on physicochemical characterization of Konhaye Stream District Dir Lower, Khyber Pakhtunkhwa Pakistan. World J. Fish Mar. Sci., 6(5): 461-470.
 
2. Dey, C. and Saha, S.K. (2014) A comparative study on the acute toxicity bioassay of dimethoate and lambda-cyhalothrin and effects on thyroid hormones of freshwater teleost fish Labeo rohita (Hamilton). Int. J. Environ. Res., 8(4): 1085-1092.
 
3. Patel, J., Landers, K., Li, H., Mortimer, R.H. and Richard, K. (2011) Thyroid hormones and fetal neurological development. J. Endocrinol., 209: 1-8.
http://dx.doi.org/10.1530/JOE-10-0444
PMid:21212091
 
4. Dimitrina, Z.Z.D. (2013) Antioxidant and acetylcholinesterase inhibition properties of Amorpha fruticosa L. and Phytolacca americana L. Pharmacogn.Mag., 9(34): 109-113.
http://dx.doi.org/10.4103/0973-1296.111251
PMid:23772105 PMCid:PMC3680849
 
5. Habib, S., Aggour, Y. and Taha, H. (2012) Downregulation of transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF) in Ehrlich ascites carcinoma-bearing mice using stearic acid-grafted carboxymethyl chitosan (SA-CMC). Nat. Sci., 4: 808-818.
 
6. Adekunle, A.S., Oyewo, B.E. and Afolabi, O.K. (2012) Therapeutic efficacy of Tapinanthus globiferus on acetaminophen induced nephrotoxicity, inflammatory reactions and oxidative stress in albino rats. Int. Res. J. Biochem. Bioinformatics, 2(2): 41-45.
 
7. Haritha, C., Gopala Reddy, A., Ramana Reddy, Y. and Anilkumar,B. (2015) Pharmacodynamic interaction of fenugreek, insulin and glimepiride on sero-biochemical parameters in diabetic Sprague-Dawley rats. Vet. World, 8(5): 656-663.
http://dx.doi.org/10.14202/vetworld.2015.656-663
 
8. Gal, N., Kolusheva, S., Kedei, N., Telek, A., Naeem, T.A., Lewin, N.E., Lim, L., Mannan, P., Garfield, S.H., El Kazzouli, S., Sigano, D.M., Marquez, V.E., Blumberg, P.M. and Jelinek, R.(2011) N-methyl-substituted fluorescent DAG-indololactone isomers exhibit dramatic differences in membrane interactions and biological activity. Chem. Biochem., 12(15): 2331-2340.
http://dx.doi.org/10.1002/cbic.201100246
 
9. Bharani, K.K. and Reddy, K.S. (2001) Effect of monocrotophos on development of brain in chick. Indian. J. Vet. Med., 29: 211-212.
 
10. Zaharan, M.M., Abdel-Aziz, K.B., Abdel-Raof, A. and Nahas, E.M. (2005) The effect of sub-acute doses of organophosphate nuvacron on the biochemical and cytogenetic parameters of mice and their embryos. Res. J. Agric. Biol. Sci., 1: 277-283.
 
11. Syed, M.N. and Shafiullah, M. (2012) Teratogenicity and embryotoxicity of organophosphorus compounds in animal models - A short review. Mil. Med. Sci. Lett., 81(1): 16-26.
 
12. Jason, R.R. and Janice, E.C. (2014) Effects of gestational exposure to chlorpyrifos on postnatal central and peripheral cholinergic neurochemistry. J. Toxicol. Environ. HealthPart A., 66(3): 275-289.
 
13. Valera, P., Zavattari, P., Albanese, S., Cicchella, D., Dinelli, E., Lima, A. and De Vivo, B. (2014) A correlation study between multiple sclerosis and type 1 diabetes incidences and geochemical data in Europe. Environ. Geochem. Health, 36: 79-98.
http://dx.doi.org/10.1007/s10653-013-9520-4
PMid:23567975
 
14. Brigitte, G., Nathalie, A., Cecile, C.R., Frederic, L., Laurence, N. and Luc, B. (2012) Specific conditions for resveratrol neuroprotection against ethanol-induced toxicity. J. Toxicol., 2012: 1-12.
 
15. Mahboob, M., Rahman, M.F., Danadevi, K., Saleha, B.B. and Grover, P. (2002) Detection of DNA damage in mouse peripheral blood leukocytes by the comet assay after oral administration of monocrotophos. Drug Chem. Toxicol., 25: 65-74.
http://dx.doi.org/10.1081/DCT-100108472
PMid:11850970
 
16. Ozcan, O.E., Uner, N., Sevgiler, Y., Usta, D. and Durmaz, H. (2015) Sublethal effects of organophosphate diazinon on the brain of Cyprinus Carpio.Drug Chem. Toxicol., 29(1): 57-67.
http://dx.doi.org/10.1080/01480540500408622
PMid:16455590
 
17. Deb, N., Das, S. (2013) Chlorpyrifos toxicity in fish: A review. Curr. World Environ., 8(1): 77-84.
http://dx.doi.org/10.12944/cwe.8.1.17
 
18. Doliney, D.C., Weidman, J.R., Waterland, R.A. and Jirtle, R.L. (2006) Maternal genistein alters coat colour and protects A (vy) mouse offspring from obesity by modifying the foetal epigenome. Environ. Health Perspect., 114: 567-572.
http://dx.doi.org/10.1289/ehp.8700
PMCid:PMC1440782
 
19. Bolognesi, C., Creus, A., Ostrosky-Wegman, P. and Marcos, R. (2011) Micronuclei and pesticide exposure. Mutagenesis, 26(1): 19-26.
http://dx.doi.org/10.1093/mutage/geq070
PMid:21164178
 
20. Palus, J., Rydzynski, K., Dziubaltowska, E., Wyszynska, K., Natarajan, A.T. and Nilsson, R. (2003) Genotoxic effects of occupational exposure to lead and cadmium. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 540: 19-28.
http://dx.doi.org/10.1016/S1383-5718(03)00167-0
 
21. Qiao, D., Seidler, F.J. and Slotkin, T.A. (2001) Developmental neurotoxicity of chlorpyrifos modeled in vitro: Comparative effects of metabolites and other cholinesterase inhibitors on DNA synthesis in PC12 and C6 cells. Environ. Health Perspect., 109: 909-913.
http://dx.doi.org/10.1289/ehp.01109909
 
22. Bernal, J., Guadano-Ferraz, A. and Morte, B. (2003) Perspectives in the study of thyroid hormone action on brain development and function. Thyroid, 13: 1005-1012.
http://dx.doi.org/10.1089/105072503770867174
PMid:14651784
 
23. Carter, W.G., Tarhoni, M., Rathbone, A.J. and Ray, D.E. (2007) Differential protein adduction by seven OP pesticides in both brain and thymus. Hum. Exp. Toxicol., 26: 347-353.
http://dx.doi.org/10.1177/0960327107074617
PMid:17615116
 
24. Zoeller, R.T. and Tan, S.W. (2007) Implications of research on assays to characterize thyroid toxicants. Critc. Rev. Toxicol., 37: 195-210.
http://dx.doi.org/10.1080/10408440601123578
PMid:17364709
 
25. Morse, D.C., Weehler, E.K., Wesseling, W., Koeman, J.H. and Brouwer, A. (1996) Alterations in rat brain thyroid hormone status pre and postnatal exposures to PCBs (Aroclor 1254). Toxicol. Appl. Pharmacol., 136: 269-279.
http://dx.doi.org/10.1006/taap.1996.0034
PMid:8619235
 
26. Alvarez-Pedrerol, M., Ribas-Fito, N., Torrent, M., Carrizo, D., Grimalt, J.O. and Sunyer, J. (2008) Effects of PCBs, p,p'-DDT, p,p'-DDE, HCB and ß-HCH on thyroid function in preschool children. Occup. Environ. Med., 65: 452-457.
http://dx.doi.org/10.1136/oem.2007.032763
PMid:17933884
 
27. Builee, T.L. and Hatherill, J.R. (2004) The role of polyhalogenated aromatic hydrocarbons on thyroid hormone disruption and cognitive function: A review. Drug Chem. Toxicol., 27: 405-424.
http://dx.doi.org/10.1081/dct-200039780
 
28. Porterfield, S.P. (2000)Thyroid dysfunction and environmental chemicals-Potential impact on brain development. Health Perspect., 108: 433-438.
 
29. Zoeller, R.T. (2010) Environmental chemicals targeting thyroid. Hormones, 9(1): 28-40.
http://dx.doi.org/10.14310/horm.2002.1250
 
30. Lopez, C.M., Pineiro, A.E., Nunenz, N., Abagnina, A.M., Villaamil, E.C. and Roses, O.E. (2000) Thyroid hormone changes in males exposed to lead in the Beunos-Aires area (Argentina). Pharmacol. Res., 42: 599-602.
http://dx.doi.org/10.1006/phrs.2000.0734
PMid:11058414
 
31. Erfurth, E.M., Gerhardsson, L., Nilsson, A., Rylander, L., Schtuz, A., Skerfving, S. (2001) Effects of lead on the endocrine system in lead smelter workers. Arch. Environ. Health, 56: 449-455.
http://dx.doi.org/10.1080/00039890109604481
PMid:11777027
 
32. Kuriyama, S.N., Talsness, C.E., Grote, K. and Chahoud, I. (2005) Developmental exposure to low dose PBDE-99: Effects on male fertility and neuro behaviour in rat off spring. Environ. Health Perspect., 113: 149-154.
http://dx.doi.org/10.1289/ehp.7421
PMid:15687051 PMCid:PMC1277857
 
33. Carr, R.L., Chambers, H.W., Guarisco, J.A., Richardson, J.R., Tang, J. and Chamber, J.E. (2001) Effects of repeated oral postnatal exposure to CPS on open field behaviour in juvenile rats. Toxicol. Sci., 59: 260-267.
http://dx.doi.org/10.1093/toxsci/59.2.260
PMid:11158719
 
34. Sanchez-Amate, M.C., Flores, P. and Sanchez-Santed, F. (2001) Effects of CPF in the plus-maze model of anxiety. Behav. Pharmacol., 12: 285-292.
http://dx.doi.org/10.1097/00008877-200107000-00007
PMid:11548114
 
35. Temerowski, M. and Van der Staay, F.J. (2005) Absence of long term behavioural effects after sub-chronic administration of low doses of methamidophos in male and female rats. Neurotoxicol. Teratol., 27: 279-297.
http://dx.doi.org/10.1016/j.ntt.2004.12.004
PMid:15734279
 
36. Ricceri, L., Venerosi, A., Capone, F., Cometa, M.F., Lorenzini, P., Fortuna, S. and Calamandrei, G. (2006) Developmental neurotoxicity of organophosphorus pesticides: Fetal and neonatal exposure to chllorpyrifos alters sex-specific behaviors at adulthood in mice. Toxicol. Sci., 93: 105-113.
http://dx.doi.org/10.1093/toxsci/kfl032
PMid:16760416
 
37. Levin, E., Sato, K., Freedman, J.H., Skene, J. and Harry, G. (2004) Developmental lead exposure impacts on spatial learning and memory: Cholinergic and glutamatergic involvement. Toxicology, 78: 893.
 
38. Slotkin, T.A., Seidler, F.J. and Fumagalli, F. (2007) Exposure to organophosphates reduces the expression of neurotrophic factors in neonatal rat brain regions: Similarities and differences in the effects of chlorpyrifos and diazinon on the fibroblast growth factor superfamily. Environ. Health Perspect., 115: 909-916.
http://dx.doi.org/10.1289/ehp.9901
 
39. Castillo, C.G., Montante, M., Dufour, L., Martinez, M.L. and Jiminez, C.M.E. (2002) Behavioural effects of exposure to endosulfan and methyl parathion in adult rats. Neurotoxicol. Teratol., 24: 797-804.
http://dx.doi.org/10.1016/S0892-0362(02)00268-4
 
40. Stone, J.D., Terry, A.V., Pauly, J.R., Prendergast, M.A. and Buccafusco, J.J. (2000) Protractive effects of chronic treatment with an acutely subtoxic regimen of diisopropylfluorophosphate on the expression of cholinergic receptor densities in rats. Brain Res., 882: 9-18.
http://dx.doi.org/10.1016/S0006-8993(00)02689-5
 
41. Guilarte, T.R., Toscano, C.D., Glothan, J.L. and Weaver, S.A. (2003) Environmental enrichment reverses cognitive and molecular deficits induced by developmental Pb exposure. Ann. Neurol., 53: 50-56.
http://dx.doi.org/10.1002/ana.10399
PMid:12509847
 
42. Gilbert, M.E., Kelly, M.E., Samson, T.E. and Goodman, J.H. (2005) Chronic developmental Pb exposure reduces neurogenesis in adult rat hippocampus but does not impair spatial learning. Toxicol. Sci., 86: 365-374.
http://dx.doi.org/10.1093/toxsci/kfi156
PMid:15788721
 
43. Ranjan, D.S., Mohan Rao, B.R. and Sanjeeva Rao, E. (2015) Carbimazole-induced histomorphological changes simulating malignancy in toxic goiter. Thyroid Res. Rep., 12(1): 29-31.
http://dx.doi.org/10.4103/0973-0354.147287