| 
              
              
              Open Access  
 
              
              
              
              Research 
              
              
(Published 
				online: 19-06-2016)  
              12. 
				
				
				Human umbilical mesenchymal stem cells 
				conditioned medium promote primary wound healing regeneration -
				
				
				Dwi Liliek Kusindarta, Hevi Wihadmadyatami, Yuda Heru Fibrianto, 
				Widagdo Sri Nugroho, Heru Susetya, Dewi Kania Musana, Hery 
				Wijayanto, Surya Agus Prihatna and A. E. T. H. Wahyuni 
              
              Veterinary World, 9(6): 605-610   
              
   
                
                
doi: 
              
				
				10.14202/vetworld.2016.605-610 
                
				  
				
				Dwi Liliek Kusindarta: 
				
				Department of Anatomy, Faculty of Veterinary Medicine, 
				Universitas Gadjah Mada, Yogyakarta, Indonesia; indarta@ugm.ac.id 
				
				Hevi Wihadmadyatami: 
				
				Department of Anatomy, Faculty of Veterinary Medicine, 
				Universitas Gadjah Mada, Yogyakarta, Indonesia; 
				heviwihadmadyatami@ugm.ac.id 
				
				Yuda Heru Fibrianto: 
				
				Department of Physiology, Faculty of Veterinary Medicine, 
				Universitas Gadjah Mada, Yogyakarta, Indonesia; fibrianto1802@gmail.com 
				
				Widagdo Sri Nugroho: 
				
				Department of Veterinary Public Health, Faculty of Veterinary 
				Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; 
				weesnugroho@ugm.ac.id 
				
				Heru Susetya: 
				
				Department of Veterinary Public Health, Faculty of Veterinary 
				Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; 
				heruanggikiki@yahoo.com 
				
				Dewi Kania Musana: 
				
				Department of Anatomy, Faculty of Veterinary Medicine, 
				Universitas Gadjah Mada, Yogyakarta, Indonesia; musanakd@ugm.ac.id 
				
				Hery Wijayanto: 
				
				Department of Anatomy, Faculty of Veterinary Medicine, 
				Universitas Gadjah Mada, Yogyakarta, Indonesia; herykh@ugm.ac.id 
				
				Surya Agus Prihatna: 
				
				Department of Obstetrics and Gynecology, Faculty of Veterinary 
				Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; 
				prihatno@ugm.ac.id 
				
				A. E. T. H. Wahyuni: 
				
				Department of Microbiology, Faculty of Veterinary Medicine, 
				Universitas Gadjah Mada, Yogyakarta, Indonesia; wahyuni_aeth@yahoo.com   
				
				Received: 13-12-2015, Accepted: 06-05-2016, Published online: 
				19-06-2016   
				
              	
              	Corresponding author: 
              	
				
				Dwi Liliek Kusindarta, e-mail: indarta@ugm.ac.id 
 
              Citation: 
				
				Kusindarta DL, Wihadmadyatami H, Fibrianto YH, Nugroho WS, 
				Susetya H, Musana DK, Wijayanto H, Prihatna SA, Wahyuni AETH 
				(2016) Human umbilical mesenchymal stem cells conditioned medium 
				promote primary wound healing regeneration, 
				
				Veterinary World, 9(6): 
				605-610. 
 
              
				Abstract 
 
				
				
				Aim: 
				
				This research was conducted to clarify the capability of human 
				umbilical mesenchymal stem cells conditioned medium (HU-MSCM) to 
				promote regenerations of primary wound healing on the incision 
				skin injury. 
				
				
				Materials and Methods: 
				
				In this study, two approaches 
				
				in vitro 
				
				and 
				
				in vivo 
				
				already done. On 
				
				in vitro 
				
				analysis, tube formation was performed using HU vein endothelial 
				cells in the presence of HU-MSCM, in some experiments cells line 
				was incubated prior the presence of lipopolysaccharide and 
				HU-MSCM then apoptosis assay was performed. Furthermore, 
				
				
				in vivo 
				
				experiments 12 female rats (Rattus 
				norvegicus) 
				were used after rats anesthetized, 7 mm wound was made by 
				incision on the left side of the body. The wound was treated 
				with HU-MSCM containing cream, povidone iodine was run as a 
				control. Wound healing regenerations on the skin samples were 
				visualized by hematoxylin-eosin staining. 
				
				
				Results: 
				
				In vitro 
				
				models elucidate HU-MSCM may decreasing inflammation at the 
				beginning of wound healing, promote cell migration and 
				angiogenesis. In addition 
				
				in vivo 
				
				models show that the incision length on the skin is decreasing 
				and more smaller, HE staining describe decreasing of 
				inflammation phase, increasing of angiogenesis, accelerate 
				fibroplasia, and maturation phase. 
				
				
				Conclusions: 
				
				Taken together our observation indicates that HU-MSCM could 
				promote the acceleration of skin tissue regenerations in primary 
				wound healing process. 
				
				Keywords: 
				
				human umbilical mesenchymal stem cells conditioned medium, 
				regenerations, wound healing. 
 
              References 
 
				
					| 1. Hardy, M.A. (1989) The biology of scar formation. Phys. 
					Ther., 69(12): 1014-1024. PMid:2479956
 |  
					|  |  
					| 2. Heureux, N.L. (2000) Stem cell and blood. Mol. Ther., 1, 
					S83-S106. http://dx.doi.org/10.1006/mthe.2000.0153
 |  
					|  |  
					| 3. Okita, K., Nagata, N. and Yamanaka, S. (2011) 
					Immunogenicity of induced pluripotent stem cells. Circ. 
					Res., 109(7): 720-721. http://dx.doi.org/10.1161/RES.0b013e318232e187
 PMid:21921270
 |  
					|  |  
					| 4. Araki, R., Uda, M., Hoki, Y., Sunayama, M., Nakamura, M., 
					Ando, S., Sugiura, M., Ideno, H., Shimada, A., Nifuji, A. 
					and Abe, M. (2013) Negligible immunogenicity of terminally 
					differentiated cells derived from induced pluripotent or 
					embryonic stem cells. Nature, 494(7435): 100-104. http://dx.doi.org/10.1038/nature11807
 PMid:23302801
 |  
					|  |  
					| 5. Tan, Y., Ooi, S. and Wang, L. (2014) Immunogenicity and 
					tumorigenicity of pluripotent stem cells and their 
					derivatives: Genetic and epigenetic perspectives. Curr. Stem 
					Cell Res. Ther., 9(1): 63-72. http://dx.doi.org/10.2174/1574888X113086660068
 PMid:24160683 PMCid:PMC3873036
 |  
					|  |  
					| 6. Wei, X., Yang, X., Han, Z., Qu, F., Shao, L. and Shi, Y. 
					(2013) Mesenchymal stem cells: A new trend for cell therapy. 
					Acta Pharmacol. Sin., 34(6): 747-754. http://dx.doi.org/10.1038/aps.2013.50
 PMid:23736003 PMCid:PMC4002895
 |  
					|  |  
					| 7. Christopeit, M., Schendel, M., Föll, J., Müller, L.P., 
					Keysser, G. and Behre, G. (2008) Marked improvement of 
					severe progressive systemic sclerosis after transplantation 
					of mesenchymal stem cells from an allogeneic 
					haploidentical-related donor mediated by ligation of CD137L. 
					Leukemia, 22(5): 1062-1064. http://dx.doi.org/10.1038/sj.leu.2404996
 PMid:17972956
 |  
					|  |  
					| 8. Dominici, M., Le Blanc, K., Mueller, I., 
					Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R.J., 
					Keating, A., Prockop, D.J. and Horwitz, E.M. (2006) Minimal 
					criteria for defining multipotent mesenchymal stromal cells. 
					The international society for cellular therapy position 
					statement. Cytotherapy, 8(4): 315-317. http://dx.doi.org/10.1080/14653240600855905
 PMid:16923606
 |  
					|  |  
					| 9. Kim, H.O., Choi, S.M. and Kim, H.S. (2013) Mesenchymal 
					stem cell-derived secretome and microvesicles as a cell-free 
					therapeutics for neurodegenerative disorders. Tissue Eng. 
					Regen. Med., 10(3): 93-101. http://dx.doi.org/10.1007/s13770-013-0010-7
 |  
					|  |  
					| 10. Baglio, S.R., Pegtel, D.M. and Baldini, N. (2012) 
					Mesenchymal stem cell secreted vesicles provide novel 
					opportunities in (stem) cell-free therapy. Front Physiol., 
					3: 1-11. http://dx.doi.org/10.3389/fphys.2012.00359
 PMid:22973239 PMCid:PMC3434369
 |  
					|  |  
					| 11. Fukuoka, H., Suga, H., Narita, K., Watanabe, R. and 
					Shintani, S. (2012) The latest advance in hair regeneration 
					therapy using proteins secreted by adipose-derived stem 
					cells. Am. J. Cosmet. Surg., 29(4): 273-282. http://dx.doi.org/10.5992/AJCS-D-12-00015.1
 |  
					|  |  
					| 12. Zhou, B.R., Xu, Y., Xu, Y., Guo, S.L., Wang, Y., Zhu, 
					F., Permatasari, F., Wu, D., Yin, Z. and Luo, D. (2013) The 
					effect of conditioned media of adipose-derived stem cells on 
					wound healing after ablative fractional carbon dioxide laser 
					resurfacing. Biomed. Res Int., 2013: 519126. http://dx.doi.org/10.1155/2013/519126
 PMid:24381938 PMCid:PMC3867954
 |  
					|  |  
					| 13. Park, B.S., Kim, W.S., Choi, J.S., Kim, H.K., Won, J.H., 
					Ohkubo, F. and Fukuoka, H. (2010) Hair growth stimulated by 
					conditioned medium of adipose-derived stem cells is enhanced 
					by hypoxia: Evidence of increased growth factor secretion. 
					Biomed. Res., 31(1): 27-34. http://dx.doi.org/10.2220/biomedres.31.27
 |  
					|  |  
					| 14. Hwang, J. and Weiss, R.E. (2014) Steroid-induced 
					diabetes: A clinical and molecular approach to understanding 
					and treatment. Diabetes Metab. Res. Rev., (30): 96-102. http://dx.doi.org/10.1002/dmrr.2486
 PMid:24123849 PMCid:PMC4112077
 |  
					|  |  
					| 15. Di Santo, S., Yang, Z., von Ballmoos, M.W., Voelzmann, 
					J., Diehm. N., Baumgartner, I. and Kalka, C. (2009) Novel 
					cell-free strategy for therapeutic angiogenesis: In vitro 
					generated conditioned medium can replace progenitor cell 
					transplantation. PLoS One, 4(5): e5643. http://dx.doi.org/10.1371/journal.pone.0005643
 |  
					|  |  
					| 16. Teodelinda, M., Michele, C., Sebastiano, C., Ranieri, C. 
					and Chiara, G. (2011) Amniotic liquid derived stem cells as 
					reservoir of secreted angiogenic factors capable of 
					stimulating neo-arteriogenesis in an ischemic model. 
					Biomaterials, 32(15): 3689-3699. http://dx.doi.org/10.1016/j.biomaterials.2011.01.071
 PMid:21371750
 |  
					|  |  
					| 17. Wihadmadyatami, H., Röder, L., Berghöfer, H., Bein, G., 
					Heidinger, K., Sachs, U.J. And Santoso, S. (2016) 
					Immunisation against αIIbβ3 and αvβ3 in a Type 1 variant of 
					Glanzmann's thrombasthenia caused by a missense mutation 
					Gly540Asp on β3. Thromb. Haemost., 116(2). http://dx.doi.org/10.1160/TH15-12-0982
 PMid:27098940
 |  
					|  |  
					| 18. Brooks, P.C., Montgomery, A.M.P., Rosenfeld, M., 
					Reisfeld, R.A., Hu, T.H., Klier, G. and Cheresh, D.A. (1994) 
					Integrin avb3 antagonists promote tumor-regression by 
					inducing apoptosis of angiogenic blood-vessels. Cell, 79(7): 
					1157-1164. http://dx.doi.org/10.1016/0092-8674(94)90007-8
 |  
					|  |  
					| 19. Pawitan, J.A. (2014) Prospect of stem cell conditioned 
					medium in regenerative medicine. Biomed. Res. Int., 2014: 
					965849. http://dx.doi.org/10.1155/2014/965849
 PMid:25530971 PMCid:PMC4229962
 |  
					|  |  
					| 20. Velnar, T., Bailey, T. and Smrkolj, V. (2009) The wound 
					healing process: an overview of the cellular and molecular 
					mechanisms. J. Int. Med. Res., 37(5): 1528-1542. http://dx.doi.org/10.1177/147323000903700531
 |  
					|  |  
					| 21. Mutsaers, S.E., Laurent, G.J., Bishop, E. and 
					Mcgrouther, G. (1997) Mechanisms of Tissue Repair: From 
					Wound Healing to Fibrosis. Int. J. Biochem. Cell Biol., 
					29(1): 5-17. http://dx.doi.org/10.1016/S1357-2725(96)00115-X
 |  
					|  |  
					| 22. Brooks, P.C., Clarck, R.A.F. and Cheresh, D.A. (1994) 
					Requirement of vascular integrin avb3 for angiogenesis. 
					Science, 264(5158):569-571. http://dx.doi.org/10.1126/science.7512751
 PMid:7512751
 |  
					|  |  
					| 23. Horton, M A. (1997) The alpha v beta 3 integrin 
					vitronectin receptor. Int. J. Biochem. Cell Biol., 29(5): 
					721-725. http://dx.doi.org/10.1016/S1357-2725(96)00155-0
 |  
					|  |  
					| 24. Aggarwal, S. and Pittenger, M.F. (2009) Human 
					mesenchymal stem cells modulate allogeneic immune cell 
					responses. Transplantation, 105(4): 1815-1822. |  
					|  |  
					| 25. Singer, N.G. and Caplan, A.I. (2011) Mesenchymal stem 
					cells: Mechanisms of inflammation. Annu. Rev. Pathol., 6: 
					457-478. http://dx.doi.org/10.1146/annurev-pathol-011110-130230
 PMid:21073342
 |  
					|  |  
					| 26. Zheng, Z.H., Li, X.Y., Ding, J., Jia, J.F. and Zhu, P. 
					(2008) Allogeneic mesenchymal stem cell and mesenchymal stem 
					cell-differentiated chondrocyte suppress the responses of 
					Type II collagen-reactive T cells in rheumatoid arthritis. 
					Rheumatology, 47(1): 22-30. http://dx.doi.org/10.1093/rheumatology/kem284
 PMid:18077486
 |  
					|  |  
					| 27. Wu, Y.S. and Chen, S.N. (2014) Apoptotic cell: Linkage 
					of inflammation and wound healing. Front Pharmacol., 5: 1-6. http://dx.doi.org/10.3389/fphar.2014.00001
 PMid:24478702 PMCid:PMC3896898
 |  
					|  |  
					| 28. Desmoulière, A., Badid, C., Bochaton-Piallat, M.L. and 
					Gabbiani, G. (1997) Apoptosis during wound healing, 
					fibrocontractive diseases and vascular wall injury. Int. J. 
					Biochem. Cell Biol., 29(1): 19-30. http://dx.doi.org/10.1016/S1357-2725(96)00117-3
 |  
					|  |  
					| 29. Branski, L.K., Gauglitz, G.G., Herndon, D.N. and Jeschke, 
					M.G. (2009) A review of gene and stem cell therapy in 
					cutaneous wound healing. Burns, 35(2): 171-180. http://dx.doi.org/10.1016/j.burns.2008.03.009
 PMid:18603379 PMCid:PMC3899575
 |  
					|  |  
					| 30. Chen, L., Tredget, E.E., Wu, P.Y.G., Wu, Y. and Wu, Y. 
					(2008) Paracrine factors of mesenchymal stem cells recruit 
					macrophages and endothelial lineage cells and enhance wound 
					healing. PLoS One, 3(4): e1886. http://dx.doi.org/10.1371/journal.pone.0001886
 |  
					|  |  
					| 31. Kim, W.S., Park, B.S., Sung, J.H., Yang, J.M., Park, 
					S.B., Kwak, S.J. and Park, J.S. (2007) Wound healing effect 
					of adipose-derived stem cells: A critical role of secretory 
					factors on human dermal fibroblasts. J. Dermatol. Sci., 
					48(1): 15-24. http://dx.doi.org/10.1016/j.jdermsci.2007.05.018
 PMid:17643966
 |  
					|  |  
					| 32. Singer, J.A. and Clark, R.A.F. (1999) Cutaneus wound 
					healing. N. Engl. J. Med., 341: 738-746. http://dx.doi.org/10.1056/NEJM199909023411006
 PMid:10471461
 |  |