Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916


Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ

Open Access

Research (Published online: 20-06-2016)

14. Effect of acute exposure to nonylphenol on biochemical, hormonal, and hematological parameters and muscle tissues residues of Nile tilapia; Oreochromis niloticus - Hager Tarek H. Ismail and Heba Hassan H. Mahboub

Veterinary World, 9(6): 616-625



   doi: 10.14202/vetworld.2016.616-625



Hager Tarek H. Ismail: Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, Sharkia Province, Egypt; /

Heba Hassan H. Mahboub: Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, Sharkia Province, Egypt;


Received: 07-02-2016, Accepted: 16-05-2016, Published online: 20-06-2016


Corresponding author: Hager Tarek H. Ismail, e-mail: /

Citation: Ismail HTH, Mahboub HHH (2016) Effect of acute exposure to nonylphenol on biochemical, hormonal, and hematological parameters and muscle tissues residues of Nile tilapia; Oreochromis niloticus, Veterinary World, 9(6): 616-625.

Aim: This study is aimed to evaluate some biochemical, hormonal, hematological, and histopathological changes in Nile tilapia, Oreochromis niloticus, after acute exposure to nonylphenol (NP). In addition to detection of NP residues in the fish, muscle tissues for human health concern.

Materials and Methods: A total of 90 apparently healthy Nile tilapia, O. niloticus, were randomly divided into three equal groups; each containing 30 fish (three replicates). Groups 1 and 2 kept as a control and solvent control (acetone), respectively, and Group 3 exposed to NP at a dose level of 500 μg/L water for 7 successive days. Blood and tissue samples were collected 2 times randomly from each group after 7 days from fish exposure to NP and 10 days from exposure stopping.

Results: Fish exposed to NP Group 3 showed anorexia, sluggish movement, erythema of the skin, areas of scales loss, and hemorrhagic ulcers in some areas of body region leading to exposing the viscera. Biochemical results revealed a significant increase in serum total proteins and globulins levels, a highly significant increase in serum alanine aminotransferase and aspartate aminotransferase activities, triglycerides, cholesterol, and creatinine levels, insignificant increase in serum uric acid level, and a highly significant decrease in serum testosterone and estradiol-β17 levels in Group 3 in compare with the control group. Histopathological finding confirms these results. While hematological results of the same group revealed a significant increase in red blood cells count and packed cell volume value, insignificant increase in hemoglobin concentration, leukopenia, lymphopenia, and monocytopenia in compared with the control group. All of these changes appeared after 7 days from fish exposure to NP. Most of these alterations returned toward the normal level after 10 days from stopping exposure to NP. NP residues detected in fish muscle tissues of Group 3 during exposure and after stopping exposure to it.

Conclusion: It is concluded that NP is a toxic pollutant and has an adverse effect on fish health and reproduction as well as accumulates in fish muscle tissues which may cause human health hazard.

Keywords: biochemical, hematological, hormonal, Nile tilapia, nonylphenol.

1. Ndau, L.J. and Madalla, A.N. (2015) Effects of soaked pigeon peas on the growth of Nile tilapia (Oreochromis niloticus L) fingerlings. J. Fish. Livest. Prod., 3(1): 1-4.
2. Khan, G., Kuek, C., Chaudhary, T., Fhoo, C. and Hayes, W. (2000) Role of mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41: 197-207.
3. Mishra, A. and Poddar, A.N. (2013) Haematology of freshwater Murrel (Channa punctatus Bloch), exposed to phenolic industrial wastes of the Bhilai steel plant (Chhattisgarh, India). Int. J. Sci. Eng. Res., 4: 1866-1883.
4. Chitra, K.C. and Mohan, M. (2014) Response of the freshwater fish, Oreochromis mossambicus to the environmental pollutant, nonylphenol. Int. J. Adv. Res., 2(12): 85-91.
5. Sayed, A.E.H., Mahmoud, U.M. and Mekkawy, I.A. (2012) Reproductive biomarkers to identify endocrine disruption in Clarias gariepinus exposed to 4-nonylphenol. Ecotoxicol. Environ. Saf., 78: 310-319.
6. Madhu, S. and Pooja, C. (2015) Acute toxicity of 4-nonylphenol on haemotological profile of fresh water fish Channa punctatus. Res. J. Rec. Sci., 4: 25-31.
7. Vazquez-Duhalt, R., Marquez-Rocha, F., Ponce, E., Licea, A.F. and Viana, M.T. (2005) Nonylphenol, and integrated vision of a pollutant. Appl. Ecol. Environ. Res., 4: 1-25.
8. Servos, M.R. (1999) Review of the aquatic toxicity, estrogenic responses and bioaccumulation of alkylphenols and alkylphenol polyethoxylates. Water Qual. Res. J. Can., 34(1): 123-177.
9. Metcalfe, C.D., Metcalfe, T.L., Kiparissis, Y., Koenig, B.G., Khan, C., Hughes, R.J., Croley, T.R., March, R.E. and Potter, T. (2001) Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes). Environ. Toxicol. Chem., 20: 297-308.
10. Staples, C., Mihaich, E., Carbone, J., Woodbrun, K. and Klecka, G. (2004) A weight of evidence analysis of the chronic ecotoxicity of nonylphenol ethoxylates, nonylphenol ether carboxylates and nonylphenol. Hum. Ecol. Risk Assess., 10: 999-1017.
11. Dube, P.N., Shwetha, A. and Hosetti, B.B. (2014) Impact of copper cyanide on the key metabolic enzymes of freshwater fish Catla catla (Hamilton). Biotechnol. Anim. Husband., 30: 499-508.
12. Ramesh, M., Saravanan, M. and Kavitha, C. (2009) Hormonal responses of the fish, Cyprinus carpio, to environmental lead exposure. Afr. J. Biotechnol., 8(17): 4154-4158.
13. David, M., Sangeetha, J., Shrinivas, J., Harish, E.R. and Naik, V.R. (2015) Effects of deltamethrin on haematological indices of indian major carp, Cirrhinus mrigala (Hamilton). Int. J. Pure Appl. Zool., 3(1): 37-43.
14. Soares, A., Guieysse, B., Jefferson, B., Cartmell, E. and Lester, J.N. (2008) Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ. Int., 34: 1033-1049.
15. Ahel, M., McEvoy, J. and Giger, W. (1993) Bioaccumulation of the lipophilic metabolites of nonionic surfactants in freshwater organisms. Environ. Pollut., 79: 243-248.
16. Kumaran, S.S., Kavitha, C., Ramesh, M. and Grummt, T. (2011) Toxicity studies of nonylphenol and octylphenol: Hormonal, hematological and biochemical effects in Clarias gariepinus. J. Appl. Toxicol., 31: 752-761.
17. Burtis, C.A. and Ashwood, E.R. (1999) Tietz Textbook of Clinical Chemistry. 3rd ed. WB. Saunders Co., Philadelphia, PA.
18. Doumas, B.T., Bayso, D.D., Caster, R.J., Leters, T. and Schaffer, R. (1981) Determination of serum total protein. Clin. Chem., 27: 1642.
19. Kaplan, A., Ozabo, L., Ophem, K. and Febiger, L. (1988) Clinical Chemistry: Interpretation and Techniques. 3rd ed. Lea and Febiger, Philadelphia, PA.
20. Meiattini, F. (1978) The 4-hydroxybenzoate/4-aminophenazone chromogenic system. Clin. Chem., 24(12): 2161-2165.
21. Tietz, N.W. (1995) Clinical Guide to Laboratory Tests. 3rd ed. WB. Saunders Company, Philadelphia, PA, USA.
22. Wheeler, M.J. (1995) The determination of bio-available testosterone. Ann. Clin. Biochem., 32: 345-357.
23. Melmed, S., Polonsky, K.S., Larsen, R.P. and Kronenberg, H.M. (2012) Williams Textbook of Endocrinology. 12th ed. Saunders/Elsevier, Philadelphia, PA.
24. Harvey, J.W. (2012) Veterinary Hematology: A Diagnostic Guide and Color Atlas. Elsevier Saunders, Missouri.
25. Dacie, J.V. and Lewis, S.M. (1984) Practical Hematology. 6th ed. Churchill Livingstone, Edinburgh.
26. Al-Sabti, K. and Metcalfe, C.D. (1995) Fish micronuclei for assessing genotoxicity in water. Mutat. Res., 343: 121-135.
27. Bancroft, J.D., Stevens, A. and Turner, D.R. (1996) Theory and Practice of Histological Technique. 4thed. Churchill, Livingstone, New York and London.
28. Coldham, N.G., Sivapathasundaram, S., Dave, M., Ashfield, L.A., Pottinger, T.G., Goodall, C. and Sauer, M.J. (1998) Biotransformation, tissue distribution, and persistence of 4-nonylphenol residues in juvenile rainbow trout (Oncorhynchus mykiss). Drug Metab. Dispos., 26(4): 347-354.
29. Gautam, G.J., Chaube, R. and Joy, K.P. (2015) Toxicity and tissue accumulation of 4-nonylphenol in the catfish Heteropneustes fossilis with a note on prevalence of 4-NP in water samples. Endocr. Disruptors, 3(1): 1-12.
30. Tamhane, A.C. and Dunlop, D.D. (2000) Statistic and Data Analysis from Elementary to Intermediate. Prentice Hall, Upper Saddle River, New Jersey, USA.
31. Firat, O., Cogun, H.Y., Yüzereroglu, T.A., Gök, G., Fırat, Ö., Kargin, F. and Kötemen, Y. (2011) A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus. Fish. Physiol. Biochem., 37: 657-666.
PMid:21229307 PMCid:PMC3146979
32. Midhila, E.M. and Chitra, K.C. (2015) Nonylphenol-induced hepatotoxicity in the freshwater fish, Oreochromis mossambicus. Int. J. Sci. Res. Publ., 5(3): 1-5.
33. Maita, M. (2007) Fish health assessment. In: Nakagawa, H., Sato, M. and Gatlin, D.M., editors. Dietary Supplements for the Health and Quality of Cultured Fish. CAB International, Oxon, UK.
34. Javed, M. and Usmani, N. (2015) Stress response of biomolecules (carbohydrate, protein and lipid profiles) in fish Channa punctatus inhabiting river polluted by thermal power plant effluent. Saudi J. Biol. Sci., 22: 237-242.
PMid:25737659 PMCid:PMC4336452
35. Younis, E.M., Abdel-Warith, A.A. and Al-Asgah, N.A. (2012) Hematological and enzymatic responses of Nile tilapia Oreochromis niloticus during short and long term sublethal exposure to zinc. Afr. J. Biotechnol., 11(19): 4442-4446.
36. Omitoyin, B.O., Ajani, E.K., Adesina, B.T. and Okuagu, C.N.F. (2006) Toxicity of lindane (gamma Hexachlorocyclohexane) to Clarias gariepinus (Burchell 1822). World J. Zool., 1(1): 57-63.
37. Murray, R.K. (1991) Harpers Biochemistry. 22nd ed. Prentice Hall, International Inc., USA.
38. Abdel-Khalek, A.A., Kadry, M., Hamed, A. and Marie, M.A. (2015) Ecotoxicological impacts of zinc metal in comparison to its nanoparticles in Nile tilapia; Oreochromis niloticus. J. Basic Appl. Zool., 72: 113-125.
39. Chang, L., Magos, L. and Suzuki, T. (1996) Toxicology of Metals. Lewis Publishers, New York.
40. Adham, K.G., Ibrahim, H.M., Hamed, S.S. and Saleh, A.R. (2002) Blood chemistry of the Nile tilapia, Oreochromis niloticus (Linnaeus, 1757) under the impact of water pollution. Aquat. Ecol., 36(4): 549-557.
41. Mylonas, C.C., Woods, L.C., Thomas, P. and Zohar, Y. (1998) Endocrine profiles of female striped bass (Morone saxatilis) in captivity, during post-vitellogenesis and induction of final oocyte maturation via controls release GnRHa – Delivery system. Gen. Comp. Endocrinol., 110: 276-289.
42. Kime, D.E. (1999) A strategy for assessing the effects of xenobiotics on fish reproduction. Sci. Total Environ., 225: 3-11.
43. Mommsen, T.P. and Moon, T.P. (2005) Environmental Toxicology. 1st ed. Elsevier, Amsterdam, Netherlands.
44. Jobling, S., Sumpter, J.P., Sheahan, D., Osborne, J.A., Matthiessen, P. and Sumpter, J.P. (1996) Inhibition of testicular growth in rainbow trout (oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environ. Toxicol. Chem., 15(2): 194202.
45. Arukwe, A., Förlin, L. and Goksøyr, A. (1997) Xenobiotic and steroid biotransformation enzymes in atlantic Salmon (salmo salar) liver treated with an estrogenic compound, 4-nonylphenol. Environ. Toxicol. Chem., 16(12): 2576-2583.
46. Akinrotimi, O.A., Agokei, E.O. and Aranyo, A.A. (2012) Changes in blood parameters of Tilapia guineensis exposed to different salinity levels. J. Environ. Eng. Technol., 1: 4-12.
47. Zaki, M.S., Fawzi, O.M., Moustafa, S., Seamm, S., Awad, I. and El-Belbasi, H.I. (2010) Biochemical and immunological studies in Tilapia zilli exposed to lead pollution and climate change. Nat. Sci., 7(12): 90-93.
48. Bushra, A., Abul Farah, M., Niamat, M.A. and Waseem, A. (2002) Induction of micronuclei and erythrocyte alterations in the catfish Clarias batrachus by 2, 4-dichlorophenoxyacetic acid and butachlor. Mutat. Res., 518: 135-144.
49. Okonkwo, J.C., Obiakor, M.O. and Nnabude, P.C. (2011) Micronuclei profile: An index of chromosomal aberrations in freshwater fishes (Synodontis clarias and Tilapia nilotica). Online J. Anim. Feed Res., 1(1): 40-45.
50. Serrano-Garcia, L. and Montero-Montoya, R. (2001) Micronuclei and chromatid buds are the result of related genotoxic events. Environ. Mol. Mutagen., 38: 38-45.
51. Mahboob, S., Al-Balwai, H.F.A., Al-Misned, F. and Ahmad, Z. (2014) Investigation on the genotoxicity of mercuric chloride to freshwater Clarias gariepinus. Pak. Vet. J., 34(1): 100-103.
52. Harabawy, A.A. and Mosleh, Y. (2014) The role of vitamins A, C, E and selenium as antioxidants against genotoxicity and cytotoxicity of cadmium, copper, lead and zinc on erythrocytes of Nile tilapia, Oreochromis niloticus. Ecotoxicol. Environ. Saf., 104: 28-35.
53. Adedeji, O.B., Adeyemo, O.K. and Agbede, S.A. (2009) Effects of diazinon on blood parameters in the African catfish (Clarias gariepinus). Afr. J. Biotechnol., 8(16): 3940-3946.
54. John, P.J. (2007) Alteration of certain blood parameters of freshwater teleost Mystus vittatus after chronic exposure to metasystox and sevin. Fish. Physiol. Biochem., 33(1): 15-20.