| 
              
              
              Open Access  
 
              
              
              
              Research 
              
              
(Published 
				online: 06-06-2016)  
              5. 
				
				
				The types of endocrine cells in the pancreas of Sunda porcupine 
				(Hystrix 
				javanica) 
				- 
				
				Teguh Budipitojo, Yuda Heru Fibrianto and Guntari Titik Mulyani 
              
              Veterinary World, 9(6): 563-567   
              
   
                
                
doi: 
              
				
				10.14202/vetworld.2016.563-567 
                
				  
				
				Teguh Budipitojo: 
				
				Department of Anatomy, Veterinary Medicine Faculty, Gadjah Mada 
				University, Yogyakarta, Indonesia; budipitojo@ugm.ac.id 
				
				Yuda Heru Fibrianto: 
				
				Department of Physiology, Veterinary Medicine Faculty, Gadjah 
				Mada University, Yogyakarta, Indonesia; fibrianto1802@gmail.com 
				
				Guntari Titik Mulyani: 
				
				Department of Internal Medicine, Veterinary Medicine Faculty, 
				Gadjah Mada University, Yogyakarta, Indonesia; guntari@ugm.ac.id   
				
				Received: 29-02-2016, Accepted: 27-04-2016, Published online: 
				06-06-2016 
				  
				
              	
              	Corresponding author:Teguh Budipitojo, e-mail: budipitojo@ugm.ac.id 
 
              Citation: 
				
				Budipitojo T, Fibrianto YH, Mulyani GT (2016) The types of 
				endocrine cells in the pancreas of Sunda porcupine (Hystrix 
				javanica),
				
				
				Veterinary World, 9(6): 
				563-567. 
 
              
				Abstract 
 
				
				
				Aim: 
				
				To identify the types of endocrine cells in the pancreas of the 
				Sunda porcupine (Hystrix 
				javanica) 
				and its immunolocalization. 
				
				
				Materials and Methods: 
				
				Five adult 
				
				H. javanica 
				
				were used without sexual distinction. The presences of endocrine 
				cells (glucagon, insulin, somatostatin, and pancreatic 
				polypeptide [PP]) in pancreatic tissues were detected using the 
				avidinbiotin-peroxidase complex method. 
				
				
				Results: 
				
				The fusiform, round, and oval form endocrine cells were detected 
				in the islets of Langerhans and exocrine parts. Most of the 
				insulin cells were found in the central area, glucagon cells 
				were identified in the central and peripheral areas, and 
				somatostatin and PP cells were detected in the mantle area of 
				the islets of Langerhans. Glucagon and somatostatin cells were 
				also detected in smaller numbers of peripheral parts of the 
				islet. In all of the islet parts, glucagon endocrine cells were 
				most prevalent cell type and then, somatostatin, insulin, and 
				PP. In the exocrine parts, PP, somatostatin, glucagon, and 
				insulin endocrine cells were found in the inter-acinus part with 
				moderate, moderate, a few and rare numbers, in that order. In 
				the pancreatic duct, glucagon and somatostatin cells were found 
				between epithelial cells in rare numbers. 
				
				
				Conclusion: 
				
				The pancreas of Sunda porcupine (H. 
				javanica) 
				contains four types of major pancreatic endocrine cells with 
				approximately similar distribution patterns to the other 
				rodents, except for abundant glucagon cells in the peripheral 
				area of the islets of Langerhans. 
				
				Keywords: 
				
				endocrine cell types, 
				
				Hystrix javanica, 
				immunohistochemistry, pancreas, Sunda porcupine. 
 
              References 
 
				
					| 1. Lunde, D. and Aplin, K. (2008) Hystrix javanica. The IUCN 
					Red List of Threatened Species. Version. 2015.2. Available 
					from: http://www.iucnredlist.org. Downloaded on 07-09-2015. |  
					|  |  
					| 2. Woods, C.A. and Kilpatrick, C.W. (2005) Hystricognathi. 
					In: Wilson, D.E. and Reeder, D.M., editors. Mammal Species 
					of the World: A Taxonomic and Geographic Reference. 3rd ed. 
					Johns Hopkins University Press, Baltimore. p1538-1600. |  
					|  |  
					| 3. Purwaningsih, E. (2013) The first report of new species: 
					Trichuris landak n sp. Asian Pac. J. Trop. Biomed., 3(2): 
					85-88. http://dx.doi.org/10.1016/S2221-1691(13)60029-5
 |  
					|  |  
					| 4. Ciciotte, S.L., Lessard, M., Akeson, E.C., Cameron, E., 
					Stearns, T.M., Denegre, J.M., Ruberte, J. and Svenson, K.L. 
					(2014) 3-Dimensional histological reconstruction and imaging 
					of the murine pancreas. Mamm. Genome., 25(9-10): 539-548. http://dx.doi.org/10.1007/s00335-014-9522-2
 PMid:24838824 PMCid:PMC4164858
 |  
					|  |  
					| 5. Li, R., Yu, L., Zhang, X., Zhou, X., Wang, M. and Zhao, 
					H. (2015) Distribution of islet hormones in human adult 
					pancreatic ducts. Digestion, 91(2): 174-179. http://dx.doi.org/10.1159/000371796
 PMid:25765455
 |  
					|  |  
					| 6. Ku, S.K., Lee1, H.S. and Lee, J.H. (2010) An 
					immunohistochemical study of pancreatic endocrine cells in 
					SKH-1 hairless mice. Eur. J. Histochem., 46: 229-236. http://dx.doi.org/10.4081/1684
 |  
					|  |  
					| 7. Gomez, D.L., O'Driscoll, M., Sheets, T.P., Hruban, R.H., 
					Oberholzer, J., McGarrigle, J.J. and Shamblott, M.J. (2015) 
					Neurogenin 3 expressing cells in the human exocrine pancreas 
					have the capacity for endocrine cell fate. PLoS One, 
					10(8):e0133862. http://dx.doi.org/10.1371/journal.pone.0133862
 |  
					|  |  
					| 8. Arciszewski, M.B., Mozel, S. and Sienkiewicz, W. (2015) 
					Pituitary adenylate cyclase-activating peptide-27 (PACAP-27) 
					is co-stored with galanin, substance P and corticotropin 
					releasing factor (CRF) in intrapancreatic ganglia of the 
					sheep. Pol. J. Vet. Sci., 18(2): 343-350. http://dx.doi.org/10.1515/pjvs-2015-0044
 |  
					|  |  
					| 9. Sun, L., Dai, Y., Wang, C., Chu, Y., Su, X., Yang, J., 
					Zhou, J., Huang, W. and Qian, H. (2015) Novel pentapeptide 
					GLP-1 (32-36) amide inhibits β-Cell apoptosis in vitro and 
					improves glucose disposal in streptozotocin-induced diabetic 
					mice. Chem. Biol. Drug, 86(6): 1482-1490. http://dx.doi.org/10.1111/cbdd.12615
 PMid:26178446
 |  
					|  |  
					| 10. Wieczorek, G., Pospischil, A. and Perentes, E.A. (1998) 
					Comparative immunohisto-chemical study of pancreatic islets 
					in laboratory animals (rats, dogs, minipigs, nonhuman 
					primates). Exp. Toxicol. Pathol., 50(3): 151-172. http://dx.doi.org/10.1016/S0940-2993(98)80078-X
 |  
					|  |  
					| 11. Ozdemir, D. (2005) Pancreas morphology of the porcupine 
					(Hystrix cristata). Rev. Med. Vet., 156(3): 135-137. |  
					|  |  
					| 12. Timurkaan, S., Girgin, A. and Karan, M. (2006) 
					Immunohistochemical study of the pancreatic endocrine cells 
					of the Hystrix cristata (porcupine). Rev. Med. Vet., 157(7): 
					357-360. |  
					|  |  
					| 13. Mori, E., Lovari, S., Sforzi, A., Romeo, G., Pisani, C., 
					Massolo, A. and Fattorini, L. (2014) Patterns of spatial 
					overlap in a monogamous large rodent, the crested porcupine. 
					Behav. Process, 107: 112-118. http://dx.doi.org/10.1016/j.beproc.2014.08.012
 PMid:25168817
 |  
					|  |  
					| 14. Dabbs, D.J. (2014) Diagnostic Immunohistochemistry. 3rd 
					ed. Churchill Livingstone Elsevier, Philadelphia, PA. |  
					|  |  
					| 15. Yesildag, B., Bock, T., Herrmanns, K., Wollscheid, B. 
					and Stoffel, M. (2015) Kin of IRRE-like protein 2 is a 
					phosphorylated glycoprotein that regulates basal insulin 
					secretion. J. Biol. Chem., 2015. pii: jbc. M115.684704. http://dx.doi.org/10.1074/jbc.m115.684704
 |  
					|  |  
					| 16. Camihort, G., Del Zotto, H., Gomez-Dumm, C.L. and 
					Gagliardino, J.J. (2000) Quantitative ultrastructural 
					changes induced by sucrose administration in the pancreatic 
					B cells of normal hamsters. Biocell, 24: 31-37. PMid:10893797
 |  
					|  |  
					| 17. Tariq, S., Rashed, H., Nurulain, S.M., Emerald, B.S., 
					Koturan, S., Tekes, K. and Adeghate, E. (2015) Distribution 
					of nociceptin in pancreatic islet cells of normal and 
					diabetic rats. Pancreas, 44(4): 602-607. http://dx.doi.org/10.1097/MPA.0000000000000306
 PMid:25875798
 |  
					|  |  
					| 18. Gomez Dumm, C.L., Console, G.M., Lunna, G.C., Dardenne, 
					M. and Goya, R.G. (1995) Quantitative immunohistochemical 
					changes in the endocrine pancreas of nonobase diabetic (NOD) 
					mice. Pancreas, 11: 396-401. http://dx.doi.org/10.1097/00006676-199511000-00012
 |  
					|  |  
					| 19. Ku, S.K., Lee, H.S., Park, K.D. and Lee, J.H. (2001) An 
					immunohis-tochemical study on the pancreatic islets cells of 
					the Mongolian gerbils, Meriones unguiculatus. J. Vet. Sci., 
					2: 9-14. PMid:14614288
 |  
					|  |  
					| 20. Sasaki, M., Arai, T., Usui, T. and Oki, Y. (1991) 
					Immunohistochemical, ultrastructural, and hormonal studies 
					on the endocrine pancreas of voles (Microtus arvalis) with 
					monosodium aspartate-induced diabetes. Vet. Pathol., 28(6): 
					497-505. http://dx.doi.org/10.1177/030098589102800606
 |  
					|  |  
					| 21. Lotfy, M., Singh, J., Rashed, H., Tariq, S., Zilahi, E. 
					and Adeghate, E. (2014) The effect od glucagon-like 
					peptide-1 in the management of diabetes mellitus: Cellular 
					and molecular mechanism. Cell Tissue Res., 358(2): 343-358. http://dx.doi.org/10.1007/s00441-014-1959-9
 PMid:25115772
 |  |