Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access


Research (Published online: 21-11-2016)

19. Chronic exposure to indoxacarb and pulmonary expression of toll-like receptor-9 in mice - Sandeep Kaur, C. S. Mukhopadhyay and R. S. Sethi

Veterinary World, 9(11): 1282-1286

 

 

   doi: 10.14202/vetworld.2016.1282-1286

 

 

Sandeep Kaur: School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana - 141 004, Punjab, India; sndp4482@gmail.com

C. S. Mukhopadhyay: School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana - 141 004, Punjab, India; csmbioinfo@gmail.com

R. S. Sethi: School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana - 141 004, Punjab, India; rs.sethi@usask.ca

 

Received: 25-04-2016, Accepted: 14-10-2016, Published online: 21-11-2016

 

Corresponding author: R. S. Sethi, e-mail: rs.sethi@usask.ca


Citation: Kaur S, Mukhopadhyay CS, Sethi RS (2016) Chronic exposure to indoxacarb and pulmonary expression of toll-like receptor-9 in mice, Veterinary World, 9(11): 1282-1286.



Aim: Chronic exposure to indoxacarb and pulmonary expression of toll-like receptor 9 (TLR-9) in mice.

Materials and Methods: In this study, healthy male Swiss albino mice (n=30) aging 8-10 weeks were used to evaluate TLR-9 expression in lungs of mice following indoxacarb exposure with and without lipopolysaccharide (LPS). Indoxacarb was administered orally dissolved in groundnut oil at 4 and 2 mg/kg/day for 90 days. On day 91, five animals from each group were challenged with LPS/normal saline solution at 80 μg/animal. The lung tissues were processed for real time and immunohistochemical studies.

Results: LPS resulted increase in fold change m-RNA expression level of TLR-9 as compare to control, while indoxacarb (4 mg/kg) alone and in combination with LPS resulted 16.21-fold change and 29.4-fold change increase in expression of TLR-9 m-RNA, respectively, as compared to control. Similarly, indoxacarb (2 mg/kg) alone or in combination with LPS also altered TLR-9 expression. Further at protein level control group showed minimal expression of TLR-9 in lungs as compare to other groups, however, LPS group showed intense positive staining in bronchial epithelium as well as in alveolar septal cells. Indoxacarb at both doses individually showed strong immuno-positive reaction as compare to control, however when combined with LPS resulted intense staining in airway epithelium as compare to control.

Conclusion: Chronic oral administration of indoxacarb for 90 days (4 and 2 mg/kg) alters expression of TLR-9 at m-RNA and protein level and co-exposure with LPS exhibited synergistic effect.

Keywords: indoxacarb, lipopolysaccharide, lungs, mice, toll-like receptor-9.



1. US EPA. (1996) Pesticide Industry Sales and Usage: Market Estimates. Available from: http://link.lvccld.org/portal/Pesticide-industry-sales-and-usage-Online-/X8jiI9zvgxY/. Accessed on 12-11-2015.
 
2. Banerjee, B.D., Koner, B.C. and Ray, A. (1996) Immunotoxicity of pesticides: Perspectives and trends. Indian J. Exp. Biol., 34(8): 723-733.
PMid:8979476
 
3. Bolognesi, C. (2003) Genotoxicity of pesticides: A review of human biomonitoring studies. Mutat. Res., 543: 251-272.
https://doi.org/10.1016/S1383-5742(03)00015-2
 
4. Marrs, T.C. and Dewhurst, I.C. (2012) Toxicology of some insecticides not discussed elsewhere. In: Marrs, T.C., editor. Toxicology of Insecticides. RSC Publishing, Cambridge, UK. p288-301.
https://doi.org/10.1039/9781849733007-00288
 
5. US EPA. (2007). Indoxacarb; Pesticide tolerance. In: Office of Prevention Pesticides and Toxic Substances, editor. Federal Registrar, Available from https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-067710_30-Oct-10.pdf. Accessed on 10-10-2015..
 
6. Zhou, B., Zhou, H., Ling, S., Guo, D., Yan, Y., Zhou, F. and Wu, Y. (2011) Activation of PAR2 or/and TLR4 promotes SW620 cell proliferation and migration via phosphorylation of ERK1/2. Oncol. Rep., 25: 503-511.
https://doi.org/10.3892/or.2010.1077
PMid:21152870
 
7. Rutz, M., Metzger, J., Gellert, T., Luppa, P., Lipford, G.B., Wagner, H. and Bauer, S. (2004) Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur J. Immunol., 34: 2541-2550.
https://doi.org/10.1002/eji.200425218
PMid:15307186
 
8. Krieg, A.M. (2002) CpG motifs in bacterial DNA and their immune effects. Ann. Rev. Immunol., 20: 709-760.
https://doi.org/10.1146/annurev.immunol.20.100301.064842
PMid:11861616
 
9. Schneberger, D., Caldwell, S., Kanthan, R. and Singh, B. (2013) Expression of toll-like receptor 9 in mouse and human lungs. J. Anat., 222: 495-503.
https://doi.org/10.1111/joa.12039
PMid:23521717 PMCid:PMC3633339
 
10. Schwartz, D.A., Quinn, T.J., Thorne, P.S., Sayeed, S., Yi, A.K. and Krieg, A.K. (1997) CpG motifs in bacterial DNA cause inflammation in the lower respiratory tract. J. Clin. Invest., 100: 68-73.
https://doi.org/10.1172/JCI119523
PMid:9202058 PMCid:PMC508166
 
11. Knuefermann, P., Baumgarten, G., Koch, A., Schwederski, M., Velten, M., Ehrentraut, H., Mersmann, J., Meyer, R., Hoeft, A., Zacharowski, K. and Grohe, C. (2007) CpG oligonucleotide activates Toll-like receptor 9 and causes lung inflammation in vivo. Respir. Res., 8: 72-80.
https://doi.org/10.1186/1465-9921-8-72
PMid:17925007 PMCid:PMC2173891
 
12. Parilla, N.W., Hughes, V.S., Lierl, K.M., Wong, R.W. and Page, K. (2006) CpG DNA modulates interleukin 1β-induced interleukin-8 expression in human bronchial epithelial (16HBE14o-) cells. Respir. Res., 7: 84-92.
https://doi.org/10.1186/1465-9921-7-84
PMid:16740161 PMCid:PMC1489942
 
13. Schwartz, D.A., Wohlford-Lenane, C.L., Quinn, T.J. and Krieg, A.M. (1999) Bacterial DNA or oligonucleotides containing unmethylated CpG motifs can minimize lipopolysaccharide-induced inflammation in the lower respiratory tract through an IL-12-dependent pathway. J. Immunol., 163: 224-231.
PMid:10384120
 
14. West, A.P., Shadel, G.S. and Ghosh, S. (2011) Mitochondria in innate immune responses. Nat. Rev. Immunol., 11: 389-402.
https://doi.org/10.1038/nri2975
PMid:21597473 PMCid:PMC4281487
 
15. Michel, O. (2000) Systemic and local airways inflammatory response to endotoxin. Toxicology, 152: 25-30.
https://doi.org/10.1016/S0300-483X(00)00288-2
 
16. Michel, O., Dentener, M., Corazza, F., Buurman, W. and Rylander, R. (2001) Healthy subjects express differences in clinical responses to inhaled lipopolysaccharide that are related with inflammation and with atopy. J. Allergy Clin. Immunol., 107: 797-804.
https://doi.org/10.1067/mai.2001.114249
PMid:11344345
 
17. Duramad, P., Tager, I.B., Leikauf, J., Eskenazi, B. and Holland, N.T. (2006) Expression of Th1/Th2 cytokines in human blood after in vitro treatment with chlorpyrifos, and its metabolites, in combination with endotoxin LPS and allergen Der p1. J. Appl. Toxicol., 26(5): 458-465.
https://doi.org/10.1002/jat.1162
PMid:16871525
 
18. Nagajyothi, F., Desruisseaux, M.S., Machado, F.S., Upadhya, R., Zhao, D., Schwartz, G.J., Teixeira, M.M., Albanese, C., Lisanti, M.P., Chua, S.C.Jr., Weiss, L.M., Scherer, P.E. and Tanowitz, H.B. (2012) Response of adipose tissue to early infection with Trypanosoma cruzi (Brazil strain). J. Infect. Dis., 205(5): 830-840.
https://doi.org/10.1093/infdis/jir840
PMid:22293433 PMCid:PMC3274374
 
19. Guo, S., Al-Sadi, R., Said, H.M. and Ma, T.Y. (2013) Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am. J. Pathol., 182(2): 375-387.
https://doi.org/10.1016/j.ajpath.2012.10.014
PMid:23201091 PMCid:PMC3562736
 
20. Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T) method. Methods, 25(4): 402-408.
https://doi.org/10.1006/meth.2001.1262
PMid:11846609
 
21. Pandit, A.A., Choudhary, S., Ramneek, Singh, B. and Sethi, R.S. (2016) Imidacloprid induced histomorphological changes and expression of TLR-4 and TNFα in lung. Pest. Biochem. Physiol., 131: 9-17.
https://doi.org/10.1016/j.pestbp.2016.02.004
PMid:27265821
 
22. Ben, D.F., Yu, X.Y., Ji, G.Y., Zheng, D.Y., Lv, K.Y., Ma, B. and Xia, Z.F. (2012) TLR4 mediates lung injury and inflammation in intestinal ischemia-reperfusion. J. Surg. Res., 174(2): 326-333.
https://doi.org/10.1016/j.jss.2010.12.005
PMid:21392794
 
23. Aharonson-Raz, K., Lohmann, K.L., Townsend, H.G., Marques, F. and Singh, B. (2012) Pulmonary intravascular macrophages as proinflammatory cells in heaves, an asthma-like equine disease. Am. J. Physiol. Lung. Cell. Mol. Physiol., 303(3): L189-L198.
https://doi.org/10.1152/ajplung.00271.2011
 
24. Hoppstadter, J., Diesel, B., Zarbock, R., Breinig, T., Monz, D., Koch, M., Meyerhans, A., Gortner, L., Lehr, C.M., Huwer, H. and Kiemer, A.K. (2010) Differential cell reaction upon toll-like receptor 4 and 9 activation inhuman alveolar and lung interstitial. Respir. Res., 11: 124.
https://doi.org/10.1186/1465-9921-11-124
PMid:20843333 PMCid:PMC2949727
 
25. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K. and Akira, S. (2000) A toll-like receptor recognizes bacterial DNA. Nature, 408: 740-745.
https://doi.org/10.1038/35047123
PMid:11130078
 
26. Cardon, L.R., Burge, C., Clayton, D.A. and Karlin, S. (1994) Pervasive CpG suppression in animal mitochondrial genomes. Proc. Natl. Acad. Sci. USA., 91: 3799-3803.
https://doi.org/10.1073/pnas.91.9.3799
PMid:8170990 PMCid:PMC43669
 
27. Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., Brohi, K., Itagaki, K. and Hauser, C.J. (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature, 464: 104-107.
https://doi.org/10.1038/nature08780
PMid:20203610 PMCid:PMC2843437
 
28. Yeo, S.J., Yoon, J.G., Hong, S.C. and Yi, A.K. (2003) CpG DNA induces self and cross-hyporesponsiveness of RAW264.7 cells in responseto CpG DNA and lipopolysaccharide: Alterations in IL-1 receptor associated kinase expression. J. Immunol., 170: 1052-1061.
https://doi.org/10.4049/jimmunol.170.2.1052
PMid:12517973
 
29. Jozsef, L., Khreiss, T. and Filep, J.G. (2004) CpG motifs in bacterial DNA delay apoptosis of neutrophil granulocytes. FASEB J., 18: 1776-1778.
https://doi.org/10.1096/fj.04-2048fje
 
30. Platz, J., Beisswenger, C., Dalpke, A., Koczulla, R., Pinkenburg, O., Vogelmeier, C. and Bals, R. (2004) Microbial DNA induces a host defense reaction of human respiratory epithelial cells. J. Immunol., 173(2): 1219-123.
https://doi.org/10.4049/jimmunol.173.2.1219
 
31. Demedts, I.K., Bracke, K.R., Maes, T., Joos, G.F. and Brusselle, G.G. (2006) Different roles for human lung dendritic cell subsets inpulmonary immune defense mechanisms. Am. J. Respir. Cell Mol. Biol., 35: 387-393.
https://doi.org/10.1165/rcmb.2005-0382OC
PMid:16627825
 
32. Schneberger, D., Caldwell, S., Suri, S.S. and Singh, B. (2009) Expression of toll-like receptor 9 in horse lungs. Anat. Rec., 292: 1068-1077.
https://doi.org/10.1002/ar.20927
PMid:19548205
 
33. Schneberger, D., Lewis, D., Caldwell, S. and Singh, B. (2011b) Expression of toll-like receptor 9 in lungs of pigs, dogs and cattle. Int. J. Exp. Pathol., 92: 1-7.
https://doi.org/10.1111/j.1365-2613.2010.00742.x
PMid:21044185 PMCid:PMC3052751
 
34. Nakadai, A., Li, Q. and Kawada, T. (2006) Chlorpyrifos induces apoptosis in human monocyte cell line U937. Toxicology, 224(3): 202-209.
https://doi.org/10.1016/j.tox.2006.04.055
PMid:16787693
 
35. Kiemer, A.K., Senaratne, R.H., Hoppstadter, J., Diesel, B., Riley, L.W., Tabeta, K., Bauer, S., Beutler, B. and Zuraw, B.L. (2008) Attenuated activation of macrophage TLR9 by DNA from virulent mycobacteria. J. Innate Immun., 1: 29-45.
https://doi.org/10.1159/000142731
PMid:20375564
 
36. Merkowsky, K., Sethi, R.S., Gill, J.P.S. and Singh, B. (2016) Fipronil induces lung inflammation in vivo and cell death in vitro. J. Occup. Med. Toxicol., 11: 10.
https://doi.org/10.1186/s12995-016-0102-0
PMid:26997970 PMCid:PMC4797133
 
37. Schaumann, F., Müller, M., Braun., A., Luettig, B., Peden, D.B., Hohlfeld, J.M. and Krug, N. (2008) Endotoxin augments myeloid dendritic cell influx into the airways in patients with allergic asthma. Am. J. Respir. Crit. Care Med., 177(12): 1307-1313.
https://doi.org/10.1164/rccm.200706-870OC
PMid:18388357 PMCid:PMC2427055
 
38. Ilmarinen, P., Hasala, H., Sareila, O., Moilanen, E. and Kankaanranta, H. (2009) Bacterial DNA delays human eosinophil apoptosis. Pulm. Pharmacol. Ther., 22: 167-176.
https://doi.org/10.1016/j.pupt.2008.11.012
PMid:19073274