Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916


Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ

Open Access

Research (Published online: 21-11-2016)

19. Chronic exposure to indoxacarb and pulmonary expression of toll-like receptor-9 in mice - Sandeep Kaur, C. S. Mukhopadhyay and R. S. Sethi

Veterinary World, 9(11): 1282-1286



   doi: 10.14202/vetworld.2016.1282-1286



Sandeep Kaur: School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana - 141 004, Punjab, India;

C. S. Mukhopadhyay: School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana - 141 004, Punjab, India;

R. S. Sethi: School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana - 141 004, Punjab, India;


Received: 25-04-2016, Accepted: 14-10-2016, Published online: 21-11-2016


Corresponding author: R. S. Sethi, e-mail:

Citation: Kaur S, Mukhopadhyay CS, Sethi RS (2016) Chronic exposure to indoxacarb and pulmonary expression of toll-like receptor-9 in mice, Veterinary World, 9(11): 1282-1286.

Aim: Chronic exposure to indoxacarb and pulmonary expression of toll-like receptor 9 (TLR-9) in mice.

Materials and Methods: In this study, healthy male Swiss albino mice (n=30) aging 8-10 weeks were used to evaluate TLR-9 expression in lungs of mice following indoxacarb exposure with and without lipopolysaccharide (LPS). Indoxacarb was administered orally dissolved in groundnut oil at 4 and 2 mg/kg/day for 90 days. On day 91, five animals from each group were challenged with LPS/normal saline solution at 80 μg/animal. The lung tissues were processed for real time and immunohistochemical studies.

Results: LPS resulted increase in fold change m-RNA expression level of TLR-9 as compare to control, while indoxacarb (4 mg/kg) alone and in combination with LPS resulted 16.21-fold change and 29.4-fold change increase in expression of TLR-9 m-RNA, respectively, as compared to control. Similarly, indoxacarb (2 mg/kg) alone or in combination with LPS also altered TLR-9 expression. Further at protein level control group showed minimal expression of TLR-9 in lungs as compare to other groups, however, LPS group showed intense positive staining in bronchial epithelium as well as in alveolar septal cells. Indoxacarb at both doses individually showed strong immuno-positive reaction as compare to control, however when combined with LPS resulted intense staining in airway epithelium as compare to control.

Conclusion: Chronic oral administration of indoxacarb for 90 days (4 and 2 mg/kg) alters expression of TLR-9 at m-RNA and protein level and co-exposure with LPS exhibited synergistic effect.

Keywords: indoxacarb, lipopolysaccharide, lungs, mice, toll-like receptor-9.

1. US EPA. (1996) Pesticide Industry Sales and Usage: Market Estimates. Available from: Accessed on 12-11-2015.
2. Banerjee, B.D., Koner, B.C. and Ray, A. (1996) Immunotoxicity of pesticides: Perspectives and trends. Indian J. Exp. Biol., 34(8): 723-733.
3. Bolognesi, C. (2003) Genotoxicity of pesticides: A review of human biomonitoring studies. Mutat. Res., 543: 251-272.
4. Marrs, T.C. and Dewhurst, I.C. (2012) Toxicology of some insecticides not discussed elsewhere. In: Marrs, T.C., editor. Toxicology of Insecticides. RSC Publishing, Cambridge, UK. p288-301.
5. US EPA. (2007). Indoxacarb; Pesticide tolerance. In: Office of Prevention Pesticides and Toxic Substances, editor. Federal Registrar, Available from Accessed on 10-10-2015..
6. Zhou, B., Zhou, H., Ling, S., Guo, D., Yan, Y., Zhou, F. and Wu, Y. (2011) Activation of PAR2 or/and TLR4 promotes SW620 cell proliferation and migration via phosphorylation of ERK1/2. Oncol. Rep., 25: 503-511.
7. Rutz, M., Metzger, J., Gellert, T., Luppa, P., Lipford, G.B., Wagner, H. and Bauer, S. (2004) Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur J. Immunol., 34: 2541-2550.
8. Krieg, A.M. (2002) CpG motifs in bacterial DNA and their immune effects. Ann. Rev. Immunol., 20: 709-760.
9. Schneberger, D., Caldwell, S., Kanthan, R. and Singh, B. (2013) Expression of toll-like receptor 9 in mouse and human lungs. J. Anat., 222: 495-503.
PMid:23521717 PMCid:PMC3633339
10. Schwartz, D.A., Quinn, T.J., Thorne, P.S., Sayeed, S., Yi, A.K. and Krieg, A.K. (1997) CpG motifs in bacterial DNA cause inflammation in the lower respiratory tract. J. Clin. Invest., 100: 68-73.
PMid:9202058 PMCid:PMC508166
11. Knuefermann, P., Baumgarten, G., Koch, A., Schwederski, M., Velten, M., Ehrentraut, H., Mersmann, J., Meyer, R., Hoeft, A., Zacharowski, K. and Grohe, C. (2007) CpG oligonucleotide activates Toll-like receptor 9 and causes lung inflammation in vivo. Respir. Res., 8: 72-80.
PMid:17925007 PMCid:PMC2173891
12. Parilla, N.W., Hughes, V.S., Lierl, K.M., Wong, R.W. and Page, K. (2006) CpG DNA modulates interleukin 1β-induced interleukin-8 expression in human bronchial epithelial (16HBE14o-) cells. Respir. Res., 7: 84-92.
PMid:16740161 PMCid:PMC1489942
13. Schwartz, D.A., Wohlford-Lenane, C.L., Quinn, T.J. and Krieg, A.M. (1999) Bacterial DNA or oligonucleotides containing unmethylated CpG motifs can minimize lipopolysaccharide-induced inflammation in the lower respiratory tract through an IL-12-dependent pathway. J. Immunol., 163: 224-231.
14. West, A.P., Shadel, G.S. and Ghosh, S. (2011) Mitochondria in innate immune responses. Nat. Rev. Immunol., 11: 389-402.
PMid:21597473 PMCid:PMC4281487
15. Michel, O. (2000) Systemic and local airways inflammatory response to endotoxin. Toxicology, 152: 25-30.
16. Michel, O., Dentener, M., Corazza, F., Buurman, W. and Rylander, R. (2001) Healthy subjects express differences in clinical responses to inhaled lipopolysaccharide that are related with inflammation and with atopy. J. Allergy Clin. Immunol., 107: 797-804.
17. Duramad, P., Tager, I.B., Leikauf, J., Eskenazi, B. and Holland, N.T. (2006) Expression of Th1/Th2 cytokines in human blood after in vitro treatment with chlorpyrifos, and its metabolites, in combination with endotoxin LPS and allergen Der p1. J. Appl. Toxicol., 26(5): 458-465.
18. Nagajyothi, F., Desruisseaux, M.S., Machado, F.S., Upadhya, R., Zhao, D., Schwartz, G.J., Teixeira, M.M., Albanese, C., Lisanti, M.P., Chua, S.C.Jr., Weiss, L.M., Scherer, P.E. and Tanowitz, H.B. (2012) Response of adipose tissue to early infection with Trypanosoma cruzi (Brazil strain). J. Infect. Dis., 205(5): 830-840.
PMid:22293433 PMCid:PMC3274374
19. Guo, S., Al-Sadi, R., Said, H.M. and Ma, T.Y. (2013) Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am. J. Pathol., 182(2): 375-387.
PMid:23201091 PMCid:PMC3562736
20. Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T) method. Methods, 25(4): 402-408.
21. Pandit, A.A., Choudhary, S., Ramneek, Singh, B. and Sethi, R.S. (2016) Imidacloprid induced histomorphological changes and expression of TLR-4 and TNFα in lung. Pest. Biochem. Physiol., 131: 9-17.
22. Ben, D.F., Yu, X.Y., Ji, G.Y., Zheng, D.Y., Lv, K.Y., Ma, B. and Xia, Z.F. (2012) TLR4 mediates lung injury and inflammation in intestinal ischemia-reperfusion. J. Surg. Res., 174(2): 326-333.
23. Aharonson-Raz, K., Lohmann, K.L., Townsend, H.G., Marques, F. and Singh, B. (2012) Pulmonary intravascular macrophages as proinflammatory cells in heaves, an asthma-like equine disease. Am. J. Physiol. Lung. Cell. Mol. Physiol., 303(3): L189-L198.
24. Hoppstadter, J., Diesel, B., Zarbock, R., Breinig, T., Monz, D., Koch, M., Meyerhans, A., Gortner, L., Lehr, C.M., Huwer, H. and Kiemer, A.K. (2010) Differential cell reaction upon toll-like receptor 4 and 9 activation inhuman alveolar and lung interstitial. Respir. Res., 11: 124.
PMid:20843333 PMCid:PMC2949727
25. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K. and Akira, S. (2000) A toll-like receptor recognizes bacterial DNA. Nature, 408: 740-745.
26. Cardon, L.R., Burge, C., Clayton, D.A. and Karlin, S. (1994) Pervasive CpG suppression in animal mitochondrial genomes. Proc. Natl. Acad. Sci. USA., 91: 3799-3803.
PMid:8170990 PMCid:PMC43669
27. Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., Brohi, K., Itagaki, K. and Hauser, C.J. (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature, 464: 104-107.
PMid:20203610 PMCid:PMC2843437
28. Yeo, S.J., Yoon, J.G., Hong, S.C. and Yi, A.K. (2003) CpG DNA induces self and cross-hyporesponsiveness of RAW264.7 cells in responseto CpG DNA and lipopolysaccharide: Alterations in IL-1 receptor associated kinase expression. J. Immunol., 170: 1052-1061.
29. Jozsef, L., Khreiss, T. and Filep, J.G. (2004) CpG motifs in bacterial DNA delay apoptosis of neutrophil granulocytes. FASEB J., 18: 1776-1778.
30. Platz, J., Beisswenger, C., Dalpke, A., Koczulla, R., Pinkenburg, O., Vogelmeier, C. and Bals, R. (2004) Microbial DNA induces a host defense reaction of human respiratory epithelial cells. J. Immunol., 173(2): 1219-123.
31. Demedts, I.K., Bracke, K.R., Maes, T., Joos, G.F. and Brusselle, G.G. (2006) Different roles for human lung dendritic cell subsets inpulmonary immune defense mechanisms. Am. J. Respir. Cell Mol. Biol., 35: 387-393.
32. Schneberger, D., Caldwell, S., Suri, S.S. and Singh, B. (2009) Expression of toll-like receptor 9 in horse lungs. Anat. Rec., 292: 1068-1077.
33. Schneberger, D., Lewis, D., Caldwell, S. and Singh, B. (2011b) Expression of toll-like receptor 9 in lungs of pigs, dogs and cattle. Int. J. Exp. Pathol., 92: 1-7.
PMid:21044185 PMCid:PMC3052751
34. Nakadai, A., Li, Q. and Kawada, T. (2006) Chlorpyrifos induces apoptosis in human monocyte cell line U937. Toxicology, 224(3): 202-209.
35. Kiemer, A.K., Senaratne, R.H., Hoppstadter, J., Diesel, B., Riley, L.W., Tabeta, K., Bauer, S., Beutler, B. and Zuraw, B.L. (2008) Attenuated activation of macrophage TLR9 by DNA from virulent mycobacteria. J. Innate Immun., 1: 29-45.
36. Merkowsky, K., Sethi, R.S., Gill, J.P.S. and Singh, B. (2016) Fipronil induces lung inflammation in vivo and cell death in vitro. J. Occup. Med. Toxicol., 11: 10.
PMid:26997970 PMCid:PMC4797133
37. Schaumann, F., Müller, M., Braun., A., Luettig, B., Peden, D.B., Hohlfeld, J.M. and Krug, N. (2008) Endotoxin augments myeloid dendritic cell influx into the airways in patients with allergic asthma. Am. J. Respir. Crit. Care Med., 177(12): 1307-1313.
PMid:18388357 PMCid:PMC2427055
38. Ilmarinen, P., Hasala, H., Sareila, O., Moilanen, E. and Kankaanranta, H. (2009) Bacterial DNA delays human eosinophil apoptosis. Pulm. Pharmacol. Ther., 22: 167-176.