Vet World Vol.15 February-2022 Article-3
Research Article
Veterinary World, 15(2): 252-261
https://doi.org/10.14202/vetworld.2022.252-261
Synchronization of rumen degradable protein with non-fiber carbohydrate on microbial protein synthesis and dairy ration digestibility
2. Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, West Java, Indonesia.
Background and Aim: Dairy ration formulations should consider the synchronization of the rumen degradable protein (RDP) to rumen undegradable protein (RUP) ratio (RDPR) with non-fiber carbohydrate (NFC) to achieve optimum microbial protein synthesis (MPS), reduce feed costs, and reduce N excretion to the environment. This study aimed to investigate the effect of RDPR and NFC synchronization on in vitro digestibility, fermentability, and MPS.
Materials and Methods: The experiment used a 3×3 factorial randomized block design with four replications. The first factor was RDPR (RDPR1=50:50; RDPR2=55:45; RDPR3=60:40) and the second factor was NFC levels (NFC1=30%, NFC2=35%, NFC3=40%). The experimental diets were evaluated using a two-stage in vitro method. The examined parameters included rumen pH, NH3 concentration, total volatile fatty acid (VFA) concentration, the molar proportion of VFAs, rumen microbes (protozoa and total bacteria population), and MPS. Data were analyzed using ANOVA, followed by the Duncan test.
Results: The results show that neither RDPR nor NFC affected rumen pH, NH3, total VFA, and the rumen microbe population. The interaction between RDPR and NFC affected the molar proportion of acetate, iso-butyrate, and n-valerate. The combination of RDPR1 and NFC1 produced a lower molar proportion of acetate (49.73%) than the other treatment combinations (>54%). The acetate to propionate ratio was influenced by the NFC levels, in which NFC2 and NFC3 produced the highest ratio (p<0.05). MPS was affected by RDPR and NFC, but not by their interaction. Treatments NFC2 and RDPR3 produced the highest MPS. NFC affected the dry matter and organic matter digestibility (DMD and OMD), with treatment NFC3 resulting in the highest DMD and OMD.
Conclusion: The combination of a 60:40 RDPR with 35% NFC resulted in the best synchronization of protein and energy available for MPS and digestion activity in the rumen. Keywords: dairy ration digestibility, microbial protein synthesis, rumen degradable protein, rumen undegradable protein, synchronization.
Keywords: dairy ration digestibility, microbial protein synthesis, rumen degradable protein, rumen undegradable protein, synchronization.
How to cite this article: Rosmalia A, Permana IG, Despal D (2022) Synchronization of rumen degradable protein with non-fiber carbohydrate on microbial protein synthesis and dairy ration digestibility, Veterinary World, 15(2): 252-261.
Received: 31-08-2021 Accepted: 07-01-2022 Published online: 05-02-2022
Corresponding author: Idat Galih Permana E-mail: permana@apps.ipb.ac.id
DOI: 10.14202/vetworld.2022.252-261
Copyright: Rosmalia, et al. This article is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.