Open Access
Review (Published online: 09-02-2018)
10. Projected economic losses due to vector and vector-borne parasitic diseases in livestock of India and its significance in implementing the concept of integrated practices for vector management
B. W. Narladkar
Veterinary World, 11(2): 151-160

B. W. Narladkar: Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, MAFSU, Parbhani - 431 402, Maharashtra, India.

doi: 10.14202/vetworld.2018.151-160

Share this article on [Facebook] [LinkedIn]

Article history: Received: 20-10-2017, Accepted: 21-12-2017, Published online: 09-02-2018

Corresponding author: B. W. Narladkar


Citation: Narladkar BW (2018) Projected economic losses due to vector and vector-borne parasitic diseases in livestock of India and its significance in implementing the concept of integrated practices for vector management, Veterinary World, 11(2): 151-160.

Broadly, species of arthropods infesting livestock are grouped into flies (biting and non-biting), fleas, lice (biting and sucking), ticks (soft and hard), and mites (burrowing, non-burrowing, and follicular). Among which, biting and non-biting flies and ticks are the potent vectors for many bacterial, viral, rickettsial, and protozoan diseases. Vectors of livestock are having economic significance on three points (1) direct losses from their bite and annoyance, worries, and psychological disturbances produced during the act of biting and feeding, (2) diseases they transmit, and (3) expenditure incurred for their control. Flies such as Culicoides spp. and Musca spp. and various species of hard ticks play important role in disease transmission in addition to their direct effects. For control of vectors, recent concept of integrated pest management (IPM) provides the best solution and also addresses the problems related to acaricide resistance and environmental protection from hazardous chemicals. However, to successfully implement the concept of IPM, for each vector species, estimation of two monitory benchmarks, i.e., economic injury level (EIL) and economic threshold level (ETL) is essential prerequisite. For many vector species and under several circumstances, estimation of EIL and ETL appears to be difficult. Under such scenario, although may not be exact, an approximate estimate can be accrued by taking into account several criteria such as percent prevalence of vectors in a geographical area, percent losses produced, total livestock population, and current prices of livestock products such as milk, meat, and wool. Method for approximate estimation is first time described and elaborated in the present review article.

Keywords: economic injury levels, economic threshold levels, integrated pest management, vectors.


1. Baker, B.P., Cooley, D., Futrell, S., Garling, L., Gershuny, G., Green, T.A., Moyer, J., Rajotte, E.D., Seaman, A.J. and Young, S.L. (2015) Synergistic Partnership Needed to Improve the Sustainability of Agriculture and Food Systems. Organic Agriculture and Integrated Pest Management: A Publication of the National Organic and IPM Working Group. Available from: Accessed on 20-10-2016.

2. Jarvis, L.S. (1988) Strategies for Sustainable Animal Agriculture in Developing Countries. Available from: Accessed on 19-10-2017.

3. Mullens, B.A. (1991) Integrated management of Culicoides variipennis: A problem of applied ecology. In: Walton, T.E. and Osburn, B.I., editor. Blue Tongue, African Horse Sickness and Related Orb viruses. Proceedings of the 2nd International Symposium 17-21 June 1991, Paris, 1992. CRC Press, Boca Raton, Florida, USA, p896-905.

4. USDA ERS. (2013) Organic Production. Data Source. USDA Economic Research Service. October 24. Available from: Accessed on 18-10-2017.

5. Pretty, J. and Bharucha, Z.P. (2015) Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects, 6(1): 152-182. [Crossref] [PubMed] [PMC]

6. Mersha, C., Adula, D.D. and Bogale, B. (2013) Socio-economic assessment of the impacts of trypanosomiasis on cattle in Girja District, Southern Oromia Region, Southern Ethiopia. Acta Parasitol. Glob., 4: 80-85.

7. Rajput, Z.I., Hu, S., Chen, W., Arijo, A.G. and Xiao, C. (2006) Importance of ticks and their chemical and immunological control in livestock. J. Zhejiang Univ Sci. B, 7: 912-921. [Crossref] [PubMed] [PMC]

8. Jongejan, F. and Uilenberg, G. (2004) The global importance of ticks. Parasitology, 129: 1-12.

9. Ananda, K.J., D'Souza, P.E. and Puttalakshmamma, G.C. (2009) Prevalence of haemoprotozoan diseases in crossbred cattle in Bangalore north. Vet. World, 2(1): 15-16. [Crossref]

10. Uilenberg, G. (1995) International collaborative research: Significance of tick-borne hemoparasitic diseases to world animal health. Vet. Parasitol., 57: 19-41. [Crossref]

11. Makala, L.H., Mangani, P., Fujisaki, K. and Nagasawa, H. (2003) The current status of major tick borne diseases in Zambia. Vet. Res., 34: 27-45. [Crossref] [PubMed]

12. De Castro, J.J. (1997) Sustainable tick and tick borne disease control in livestock improvement in developing countries. Vet. Parasitol., 71: 77-97. [Crossref]

13. Parthiban, M., Saranya, R., Mahesh, M. and Raman, M. (2010) Detection of parasite in cattle of Tamil Nadu using nested PCR. Tamil Nadu J. Vet. Anim. Sci., 6: 162-165.

14. Lurthu, R.T., Shibi, T.K. and Babu, M. (2012) Occurrence of haemoprotozoan infection in bovines. Int. J. Appl. Biores., 13: 1-2.

15. Arunkumar, S. and Nagarajan, K. (2013) A study on prevalence status of infection among cattle population of Kancheepuram and in and around Chennai districts of Tamil Nadu. Int. J. Food Agric. Vet. Sci., 3: 155-157.

16. Mondal, D.B., Sarma, K. and Saravanan, M. (2013) Upcoming of the integrated tick control program of ruminants with special emphasis on livestock farming system in India. Ticks Tick-borne Dis., 4: 1-10. [Crossref] [PubMed]

17. FAO. (2004) Ticks: Acaricide resistance, diagnosis, management and prevention. In: Resistance Management and Integrated Parasite Control in Ruminants: Guidelines Module 1. Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Rome. p25-77.

18. Seebeck, R.M., Springell, P.H. and O'Kelly, J.C. (1971) Alterations in the host metabolism by the specific and anorectic effects of the cattle tick (Boophilus microplus) in food intake and body weight growth. Aust. J. Biol. Sci., 24: 373-380. [Crossref]

19. Grisi, L., Leite, R.C., Martins, J.R.S., Barros, A.T.M., Andreotti, R., Cancado, P.D. and Villela, H.S. (2014) Reassessment of the potential economic impact of cattle parasites in Brazil. Braz. J. Vet. Parasitol., 23: 150-156. [Crossref]

20. Freeborn, S.B., Regan, W.M. and Folger, A.H. (1925) The relation of flies and fly sprays to milk production. J. Econ. Entomol., 18: 779-790. [Crossref]

21. Drummond, R.O.G., Lambart, G., Smalley, H.E. Jr. and Terrill, C.E. (1981) Estimated losses of livestock to pests. In: Pimentel, D., Geden, C.J., Hogsette, J.A., editors. Handbook of Pest Management in Agriculture. Vol. I. CRC Press, Inc., Boca Raton FL, Held at Lincoln, Nebraska. p111-127.

22. Perich, M.J., Wright, R.E. and Lusby, K.S. (1986) Impact of horse flies (Diptera: Tabanidae) on beef cattle. J. Econ. Entomol., 79: 128-131. [Crossref] [PubMed]

23. Metacalf, H.E., Lomm, J. and Beal V.C.Jr. (1980) Estimate of incidence and direct economic losses due to bluetongue in Mississippi cattle during 1979. Proc. Ann. Mtng U.S. Anim. Hlth Assoc., 84: 186-202.

24. Millar, J.L. and Rempel, J.G. (1944) Livestock losses in Saskatchewan due to black flies. Can. J. Comp. Med. Vet. Sci., 8: 334-337. [PubMed] [PMC]

25. Fredeen, F.J.H. (1956) Black flies (Diptera: Simuliidae) of the agricultural areas of Manitoba, Saskatchewan and Alberta. Proc. 10thInt. Congr. Entomol., 10: 819-823.

26. Anonymous. (1994) In: Geden, C.J. and Hogsette, J.A. editors. Proceedings of Workshop on Research and Extension Needs for Integrated Pest Management for Arthropods of Veterinary Importance. Held at Lincoln, Nebraska. p12-14. Available from: Accessed on 15-07-2007.

27. Bruce, W.N. and Decker, G.C. (1958) The relationship of stable fly abundance to milk production in dairy cattle. J. Econ. Entomol., 51: 269-274. [Crossref]

28. Block, E. and Lewis, D.J. (1986) Efficacy of insecticidal ear tags on fly control and milk production of dairy cows. Can. J. Anim. Sci., 66: 47-51. [Crossref]

29. Lane, J., Jubb, T., Shephard, R., Webb-ware, J. and Fordyce, G. (2015) Priority List of Endemic Diseases for the Red Meat Industries. Meat and Livestock Australia (MLA), Sydney, NSW.

30. DeVaney, J.A. Craig, T.M., Rowe, L.D., Wade, C. and Miller, D.K. (1992) Effects of low levels of lice and internal nematodes on weight gain and blood parameters in calves in central Texas. J. Econ. Entomol., 85: 144-149. [Crossref]

31. Jonsson, N.N., Mayer, D.G. and Matschoss, A.L. (1998) Production effects of cattle tick (Boophilus microplus) infestation of high yielding dairy cows. Vet. Parasitol., 78: 65-77. [Crossref]

32. Rodrigues, D.S. and Leite, R.C. (2013) Economic impact of Rhipicephalus (Boophilus) microplus: Estimate of decreased milk production on a dairy farm. Arq. Bras. Med. Vet. Zootec., 65: 1570-1572. [Crossref]

33. Springell, P.H. (1974) The cattle tick in relation to animal production in Australia. World Anim. Rev., 10: 19-23.

34. Miller, R.W. (1993) The influence of dairy operations on the urban fly problem. In: Thomas, G.D., Skoda, S.R., editors. Rural Flies in Urban Environment. University of Nebraska, Lincoln NB. p25-33.

35. Holbrook, F.R. (1988) Bluetongue in the U.S.: Status, transmission and control through vector suppression. Bull. Soc. Vect. Ecol., 13: 350-353.

36. Narladkar, B.W. and Shivpuje, P.R. (2012) Research Project Report of Development of Integrated Pest Management Module Against Important Dipteran Pests of Livestock with Reference to Culicoides Midges (Diptera: Ceratopogonidae) Financed and Accepted by Department of Biotechnology, Government of India, New Delhi. p1-167.

37. Furlong, J., Derez, F., Matos, L.L. and Balbi, M.V. (1996) The Effect of Cattle Tick Boophilus microplus (Acari: Ixodidae) Infestation on Feed Intake and Milk Yield of Holstein x Zebu Zebu Crossbred Cows. Proceeding XV Pan-American Congress Vet, Campo Grande. p340.

38. Teodoro, R.L., Lemos, A.M. and Madalena, F.E. (1998) Effects of ticks Boophilus microplus infestations on milk yield of Bostaurus/Bosindicus crosses. Proceeding of the 6th World Congress Genetics. Applied to livestock Production, Amidala, Australia. p137-180.

39. Ghosh, S., Azhahianambi, P. and Yadav, M.P. (2007) Upcoming and future strategies of tick control: A review. J. Vector Dis., 44: 79-89.

40. Geevarghese, G., Fernandes, S. and Kulkarni, S.M. (1997) A checklist of Indian ticks (Acari: Ixodoidea). Indian J. Anim. Sci., 67: 566-574.

41. Minjauw, B. and McLeod, A. (2003) Tick-borne diseases and poverty. The impact of ticks and tick borne diseases on the livelihood of small-scale and marginal livestock owners in India and eastern and southern Africa. Research Report, DFID Animal Health Programme, Centre for Tropical Veterinary Medicine, University of Edinburgh, UK. Available from: Last Accessed on 18.09.2017.

42. Ghosh, S., Bansal, G.C., Gupta, S.C., Ray, D., Khan, M.Q., Irshad, H., Shahiduzzaman, M.D., Seitzer, U. and Ahmed, J.S. (2007) Status of tick distribution in Bangladesh, India and Pakistan. Parasitol. Res., 101 Suppl 2: 207-216. [Crossref] [PubMed]

43. Chhillar, S., Chhilar, J.S. and Harpreet, K. (2014) Investigations on some hard ticks (Acari: Ixodidae) Infesting domestic buffalo and cattle from Haryana, India. J. Entomol. Zool. Stud., 2: 99-104.

44. Jonsson, N.N., Davis, R. and De Witt, M. (2001) 'An estimate of the economic effects of cattle tick (Boophilus microplus) infestation on Queensland dairy farms'. Aust. Vet. J., 79: 826-831. [Crossref] [PubMed]

45. Frisch, J.E., O'Neill, C.J. and Kelly, M.J. (2000) Using genetics to control cattle parasites - The rock hampt on experience. Int. J. Parasitol., 30: 253-264. [Crossref]

46. Annual Report. (2013-14) Department of Animal Husbandry, Dairying and fisheries. Ministry of Agriculture, Government of India, New Delhi. Available from: Accessed on 19-10-2017.

47. 19th Livestock Census. (2012) All India Report, Ministry of Agriculture, Department of Animal Husbandary, Dairying and Fisheries, Krishi Bhavan New Delhi, Government of India.

48. Devendra, C. (1995) In Global Agenda for Livestock Research. EDS, ILRI, Nairobi. p41-48.

49. Singh, D., Kumar, S., Singh, B. and Bardhan, D. (2014) Economic losses due to important diseases of bovines in central India. Vet. World, 7(8): 579-585. [Crossref]

50. McLeod, R. and Kristjanson, P. (1999) Tick Cost: Economic Impact of Ticks and TBD to Livestock in Africa, Asia and Australia. International Livestock Research Institute (ILRI), Nairobi, Kenya. Available from:; Accessed on 10-08-2016.

51. US Inflatation Calculator. Available from: Accessed 18-10-2017.

52. Bhaskara, R.T. and Hafeez, M.D. (2005) Prevalence of trypanosomiasis in buffaloes in East Godavari district of Andhra Pradesh. Indian Vet. J., 82: 896-897.

53. Roy, S., Tiwari, A., Galdhar, C.N., Upadhyay, S.R., Ratre, H.K., Sahu, S.K. and Maiti, S.K. (2004) Seasonal prevalence of haemoprotozoan diseases in cross-bred cattle and buffaloes. Indian J. Vet. Med., 24: 5-7.

54. Krishnappa, T., Muralidhara, A., Sastry, K.N.V., Renuprasad, C. and Krishnappa, G. (2002) Prevalence of trypanosomiasis in domestic animals in Karnataka. Indian Vet. J., 79: 183-184.

55. Rani, N.L., Suresh, K. and Rajesh, K. (2015) A retrospective study on clinico-epidemiological aspects of trypanosomiasis in buffaloes. Int. J. Vet. Sci., 4: 97-100.

56. Laha, R., Prasad, K.D. and Saral, B.N. (1989) Incidence of Trypanosoma evansi infection in cattle, buffaloes and goats in and around Ranchi. Bihar J. Res. Birsa Agri. Univ., 1: 111-112.

57. Vahora, S.P., Patel, J.V., Patel, B.B., Patel, S.B. and Umale, R.H. (2012) Seasonal incidence of haemoprotozoan diseases in the areas where the chances of occurrence of such crossbred cattle and buffalo in Kaira and Anand district of disease is very low. Gujarat, India. Vet. World, 5: 223-225. [Crossref]

58. Muraleedharan, K., Ziauddin, K.S., Hussain, P.M., Seshadri, S.J., Mallika, A.G.B. and Puttabyatappa, B. (1994) Observations on theilerial infection of cattle in project area of Mysore cooperative milk producer's union, Karnataka state. Cheiron, 23: 130-139.

59. Nair, A.S., Ravindran, R., Lakshmanan, B., Kumar, S.S., Tresamol, P.V., Saseendranath, M.R., Senthilvel, K., Rao, J.R., Tewari, A.K. and Ghosh, S. (2011) Haemoprotozoan of cattle in Northern Kerala, India. Trop. Biomed., 28: 68-75. [PubMed]

60. Velusamy, R., Rani, N., Ponnudurai, G., Harikrishnan, T.J., Anna, T., Arunachalam, K., Senthilvel, K. and Anbarasi, P. (2014) Influence of season, age and breed on prevalence of haemoprotozoan diseases in cattle of Tamil Nadu, India. Vet. World, 7: 574-578. [Crossref]

61. Kohli, S., Atheya, U.K. and Thapliyal, A. (2014) Prevalence of theileriosis in cross-bred cattle: Its detection through blood smear examination and polymerase chain reaction in Dehradun district, Uttarakhand, India. Vet. World, 7: 168-171. [Crossref]

62. Calvete, C., Estrada, R., Miranda, M.A., Del Rio, R., Borras, D., Beldron, F.J., Martinez, A., Calvo, A.J. and Lucientes, J. (2010) Protection of livestock against bluetongue virus vector Culicoides imicola using insecticide-treated netting in open areas. Med. Vet. Entomol., 24: 169-175. [Crossref] [PubMed]

63. Narladkar, B.W. and Shivpuje, P.R. (2014) Fly proof net shed for livestock: A novel concept of physical barrier for integrated management of Culicoides spp (Diptera: Ceratopogonidae). Vet. World, 7: 899-908. [Crossref]

64. Narladkar, B.W., Deshpande, P.D., Shivpuje, P.R. and Sondge, V.D. (2006) Population dynamics of Culicoides sp of domesticated animals of Marathwada region. J. Vet. Parasitol., 20: 171-174.

65. O'Farrell, H. and Gourley, S.A. (2014) Modeling the dynamics of bluetongue disease and the effect of seasonality. B. Math. Biol., 76: 1981-2009. [Crossref] [PubMed]

66. Nayduch, D., Cohnstaedt, L.W., Saski, C., Lawson, D., Kersey, P. and Fife, M. (2014) Studying Culicoides vectors of BTV in the post-genomic era: Resources, bottlenecks to progress and future directions. Virus Res., 182: 43-49. [Crossref]

67. White, S.M., Christopher, J., Sanders, C.J., Christopher, R., Shortall, C.R., Bethan, V. and Purse, B.V. (2017) Mechanistic model for predicting the seasonal abundance of Culicoides biting midges and the impacts of insecticide control. Parasit. Vector, 10: 162. [Crossref] [PubMed] [PMC]

68. Ansari, M.A., Pope, E.C., Carpenter, S., Scholte, E.J. and Butt, T.M. (2011) Entomopathogenic fungus as a biological control for an important vector of livestock disease: The Culicoides biting midge. PLoS One, 6(1): e16108. [Crossref]

69. Narladkar, B.W., Shivpuje, P.R. and Harke, P.C. (2015a) Fungal agents for biological control of Culicoides spp (Diptera: Ceratopogonidae) of livestock. Vet. World, 8: 156-163. [Crossref] [PubMed] [PMC]

70. Nicholas, A.H. and McCorkell, B. (2014) Evaluation of Metarhizium anisopliae for the control of Culicoides brevitarsis Kieffer (Diptera: Ceratopogonidae), the principal vector of bluetongue virus in Australia. J. Vector Ecol., 39: 213-218. [Crossref] [PubMed]

71. Dylko, N.I. (1979) Biological control of blood sucking flies. Vet. Bull. Abstr. 50: 4966.

72. Narladkar, B.W., Shivpuje, P.R. and Harke, P.C. (2015b) Bacterial agents for biological control of Culicoides spp (Diptera: Ceratopogonidae). Indian Vet. J., 92: 24-28.

73. Narladkar, B.W. (2003) Studies on Bio-Ecological Aspects, Vector Potentiality and Integrated Management of Culicoides spp (Diptera: Ceratopogonidae) of Marathwada region. Ph.D. Thesis approved by Maharashtra Animal and Fishery Sciences University Nagpur, Maharashtra State.

74. Narladkar, B.W. and Shivpuje, P.R. (2015c) Herbal agents for biological control of Culicoides spp (Diptera: Ceratopogonidae). Indian Vet J., 92(5): 20-23.

75. Bandeira, M.D.C.A, Brito, G.A., da Penha, A. and Rebelo, J.M.M. (2017) The influence of environmental management and animal shelters in vector control of Culicoides (Diptera, Ceratopogonidae) in northeastern Brazil. J. Vector Ecol., 42: 113-119. [Crossref]

76. Harrup, L.E., Miguel, A., Miranda, M.A. and Carpenter, S. (2016) Advances in control techniques for Culicoides and future prospects. Vet. Ital., 52: 247-264. [PubMed]

77. De Keyser, R., Cassidy, C., Laban, S., Gopal, P., Pickett, J.A., Reddy, Y.K., Prasad, M., Prasad, G., Sreekumar, C., Senthilven, K., Carpenter, S. and Logan, J.G. (2017) Insecticidal effects of deltamethrin in laboratory and field populations of Culicoides species: How effective are host contact reduction methods in India? Parasite. Vectors, 10: 54. [Crossref] [PubMed] [PMC]

78. Narladkar, B.W., Deshpande, P.D., Vadlamudi, V.P., Shivpuje, P.R. and Deshpande, A.R. (2006) Integrated management of Culicoides sp of domesticated animals. J. Vet. Parasitol., 20: 125-128.

79. Narladkar, B.W. and Shivpuje, P.R. (2015d) Integrated approach for Rhipicephalus microplus tick management through physical measures and herbal bio-control agents. Indian Vet. J., 92: 29-33.

80. Muhammad, G., Naureen, S., Firyali, S. and Saqib, M. (2008) Tick control strategies in dairy production medicine. Pak. Vet. J., 28: 43-50.

81. Rijo, E. (1998) Biological control of ticks with entomopathogenic fungi. Riv. Pecuaria Nicaragua, 22: 17-18.

82. Bittencourt, V., Souza, E.J., Peralva, S. and Mascarenhas, A. (1997) Evaluation of the in vitro efficacy of two isolates of the entomopathogenic fungus Beauveria bassiana (Bals.) vuill. in engorged females of Boophilus microplus (Canestrini, 1887) (Acari: Ixodidae). Rev. Bras. Parasitol. Vet., 6: 49-52.

83. Lopez, G., Marin, H., Londono, M. and Vahos, R. (1998) Utilization of Metarhizium anisopliae and Beauveria bassiana for the biological control of the tick Boophilus microplus. Noticampo, 10: 12-14.

84. Shyma, K.P., Gupta, J.P., Ghosh, S., Patel, K.K. and Singh, V. (2014) Acaricidal effect of herbal extracts against cattle tick Rhipicephalus (Boophilus) microplus using in vitro studies. Parasitol. Res., 113: 1919-1926. [Crossref] [PubMed]

85. Balan, B., Baskaralingam, V., Periyannan, R., Narayanan, M.P., Palaniappan, R., Kadarkarai, M., Angelo, C. and Giovanni, B. (2017) Exploitation of chemical, herbal and nanoformulatedacaricides to control the cattle tick, Rhipicephalus (Boophilus) microplus - A review. Vet. Parasitol., 244: 102-110. [Crossref] [PubMed]

86. Narladkar, B.W., Shivpuje, P.R. and Harke, P.C. (2015e) Fungal bio-control agents for integrated management of Rhipicephalus microplus ticks. Indian Vet. J., 92: 34-37.

87. Samish, M., Ginsberg, H. and Glazer, I. (2004) Biological control of ticks. Parasitology, 129(S): 389-403. [Crossref]

88. Ren, Q.Y., Liu, Z.J., Guan, G.Q., Sun, M., Ma, M.L., Niu, Q.L., Li, Y.Q., Liu, A.H., Liu, J.L., Yang, J.F., Yin, H. and Luo, J.X. (2012) Laboratory evaluation of virulence of Chinese Beauveria bassiana and Metarhizium anisopliae isolates to engorged female Rhipicephalus (Boophilus) microplus ticks. Biol. Control, 63: 98-101. [Crossref]

89. Sun, M., Ren, Q.Y., Guan, G.Q., Li, Y.F., Han, X.Q., Ma, C., Yin, H. and Luo, J.X. (2013) Effectiveness of Beauveria bassiana sensulato strains for biological control against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) in China. Parasitol Int., 62: 412-415. [Crossref] [PubMed]

90. Fernanedz-salas, A., Alonoso-diaz, M.A., Alonoso-morale, R.A., Lezama-gutierrez, R., Rodriguez-rodroguez, J.C. and Cervantes-chavez, J.A. (2017) Acaricidal activity of Metarhiziu manisopliae isolated from paddocks in the Mexican tropics against two populations of the cattle tick Rhipicephalus microplus. Med. Vet. Entomol., 31: 36-43. [Crossref] [PubMed]

91. Gindin, G., Samish, M., Alekseev, E. and Glazer, I. (2001) The susceptibility of Boophilus annulatus (Ixodidae) ticks to entomopathogenic fungi. Biocontrol Sci. Tech., 11: 111-118. [Crossref]

92. Samish, M., Gindin, G., Alekseev, E. and Glazer, I. (2001) Pathogenicity of entomopathogenic fungi to different developmental stages of Rhipicephalus sanguineus. J. Parasitol., 87: 1355-1359. [Crossref]

93. Kaaya, G.P. and Hassan, S. (2000) Entomogenous fungi as promising biopesticides for tick control. Exp. Appl. Acarol., 24: 913-926. [Crossref]

94. Sonenshine, D.E. (1993) Biology of Ticks. Vol. II. Oxford University Press, New York. p465.

95. Perinotto, W.M.S., Angelo, C.I., Golo, P.C., Camargo, M.G., Quinelato, S., Sa, F.A., Caio, J.B., Coutinho, R.C.J.B., Marciano, A.F., Monteiro, C.M.O. and Bittencourt, V.R.E.P. (2017) In vitro pathogenicity of different Metarhizium anisopliaes.l. isolates in oil formulations against Rhipicephalus microplus. Biocontrol Sci. Tech., 27: 338-347. [Crossref]

96. Barreto, L.P., Luz, C., Mascarin, G.M., Roberts, D.W., Arruda, W. and Fernandes, E.K.K. (2016) Effect of heat stress and oil formulation on conidial germination of Metarhiziu manisopliaes.s. on tick cuticle and artificial medium. J. Invertebr. Pathol., 138: 94-103. [Crossref] [PubMed]

97. Camargo, M.G., Golo, P.S., Angelo, I.C., Perinotto, W.M.S., Sa, F.A., Quinelato, S. and Bittencourt, V.R.E.P. (2012) Effect of oil-based formulations of acaripathogenic fungi to control Rhipicephalus microplus ticks under laboratory conditions. Vet. Parasitol., 188: 140-147. [Crossref] [PubMed]

98. Camargo, M.G., Marciano, A.F., Sa, F.A., Perinotto, W.M.S., Quinelato, S., Golo, P.S. and Bittencourt, V.R.E.P. (2014) Commercial formulation of Metarhiziu manisopliae for the control of Rhipicephalus microplus in a pen study. Vet. Parasitol., 205: 271-276. [Crossref] [PubMed]

99. Camargo, M.G., Nogueira, M.R., Marciano, A.F., Perinotto, W.M.S., Coutinho-Rodrigues, C.J.B., Scott, F.B. and Bittencourt, V.R.E.P. (2016) Metarhiziu manisopliae for controlling Rhipicephalus microplus ticks under field conditions. Vet. Parasitol., 223: 38-42. [Crossref] [PubMed]

100. Shakya, M., Kumar, B., Nagar, G., de la Fuente, J. and Ghosh, S. (2014) Subolesin: A candidate vaccine antigen for the control of cattle tick in festations in Indian situation. Vaccine, 32: 3488-3494. [Crossref] [PubMed]