Open Access
Research (Published online: 23-02-2019)
20. Chemotherapeutic control of Gram-positive infection in white sea bream (Diplodus sargus, Linnaeus 1758) broodstock
Nadia G. M. Ali, Ibrahim M. Aboyadak and Heba S. El-Sayed
Veterinary World, 12(2): 316-324

Nadia G. M. Ali: Fish Disease Laboratory, National Institute of Oceanography and Fisheries, Egypt.
Ibrahim M. Aboyadak: Fish Disease Laboratory, National Institute of Oceanography and Fisheries, Egypt.
Heba S. El-Sayed: Fish Reproduction Laboratory (Marine Hatchery), National Institute of Oceanography and Fisheries, Egypt.

doi: 10.14202/vetworld.2019.316-324

Share this article on [Facebook] [LinkedIn]

Article history: Received: 27-10-2018, Accepted: 22-01-2019, Published online: 23-02-2019

Corresponding author: Nadia G. M. Ali

E-mail: nadiagabrali@gmail.com

Citation: Ali NGM, Aboyadak IM, El-Sayed HS (2019) Chemotherapeutic control of Gram-positive infection in white sea bream (Diplodus sargus, Linnaeus 1758) broodstock, Veterinary World, 12(2): 316-324.
Abstract

Aim: This study aimed to identify the pathogenic bacteria responsible for the septicemic disease affecting white sea bream brooders and determining the sensitivity of the recovered isolates to different antibiotics followed by estimation of long-acting oxytetracycline (OTC) efficacy in controlling this disease, and finally, determining the proper dose regimen.

Materials and Methods: Biolog microbial identification system was used for determination of the pathogens which are responsible for this disease. Agar disk diffusion test and minimum inhibitory concentration (MIC) were used to determine the antibiotic susceptibility of recovered isolates. Oxytetracycline (OTC) was used at a dose level of 100 mg/kg body weight for the treatment of diseased fish, and the OTC concentration in the serum samples was determined by high-performance liquid chromatography.

Results: Fifteen Staphylococcus epidermidis and 11 Bacillus cereus isolates were recovered from the lesion of muscle, tail, eye, and heart blood. S. epidermidis isolates were sensitive to OTC, ciprofloxacin, enrofloxacin, spiramycin, erythromycin (E), and florfenicol. B. cereus isolates were sensitive to all mentioned antibiotics except E. Based on the MIC test, all B. cereus isolates were sensitive to OTC with MIC ranging between <0.125 and 4 μg/ml and 11 S. epidermidis isolates were sensitive with MIC ranging between <0.125 and 8 μg/ml, while four isolates were resistant. Different degrees of degenerative changes were present in the hepatopancreas, posterior kidney, eye, and skin tissues of diseased fish.

Conclusion: Single intraperitoneal injection of long-acting OTC at a dose of 100 mg/kg body weight was effective in termination of S. epidermidis and B. cereus infection in white sea bream (D. sargus) broodstock.

Keywords: Bacillus cereus, histopathology, high-performance liquid chromatography, oxytetracycline, sensitivity, Staphylococcus epidermidis.

References

1. Zhou, X. (2017) An Overview of Recently Published Global Aquaculture Statistics, in FAO Aquaculture Newsletters, Proceedings No. 56, Switzerland.

2. OECD/FAO. (2016) OECD-FAO Agricultural Outlook 2016-2025. OECD Publishing, Paris. Available from: http://www.dx.doi.org/10.1787/agr_outlook-2016-en. Last accessed at 1/10/2018.

3. Golomazou, E., Athanassopoulou, F., Vagianou, S., Sabatakou, O., Tsantilas, H., Rigos, G. and Kokkokiis, L. (2006) Diseases of White Sea bream (Diplodus sargus L.) Reared in experimental and commercial conditions in Greece. Turk. J. Vet. Anim. Sci., 30(1): 389-396.

4. Sa, R., Pousao-Ferreira, P. and Oliva-Teles, A. (2008) Effect of dietary starch source (normal versus waxy) and protein levels on the performance of white sea bream Diplodus sargus (Linnaeus) juveniles. Aquac. Res., 39(10): 1069-1076. [Crossref]

5. Pridgeon, J.W. and Klesius, P.H. (2012) Major bacterial diseases in aquaculture and their vaccine development. CAB Rev., 7(48): 1-16. [Crossref]

6. Lafferty, K.D., Harvell, C.W., Conrad, J.M., Friedman, C.S., Kent, M.L., Kuris, A.K., Powell, E.N., Rondeau, D. and Saksida, S.M. (2015) Infectious diseases affect marine fisheries and aquaculture economics. Ann. Rev. Mar. Sci., 7(2015): 471-496. [Crossref] [PubMed]

7. Aboyadak, I.M. Sabry, N.M., Ali, N.G. and El-Sayed, H.S. (2016) Isolation of Staphylococcus epidermidis, Bacillus cereus and Pseudomonas stutzeri from diseased European sea bass (Dicentrarchus labrax) for the first time in Egypt. Egypt. J. Aquat. Biol. Fish., 20(4): 103-114. [Crossref]

8. Austin, B. and Newaj-Fyzul, A. (2017) Diagnosis and Control of Diseases of Fish and Shellfish. John Wiley and Sons Ltd., CPI Group (UK) Ltd., Croydon. [Crossref]

9. Sudheesh, P.S., Al-Ghabshi, A., Al-Mazrooei, N. and Al-Habsi, S. (2012) Comparative pathogenomics of bacteria causing infectious diseases in fish. Int. J. Evol. Biol., 2012(1): 457264. [Crossref]

10. Al Bulushi, I.M., Poole, S.E., Barlow, R., Deeth, H.C. and Dykes, G.A. (2010) Speciation of Gram-positive bacteria in fresh and ambient-stored sub-tropical marine fish. Int. J. Food Microbiol., 138(1-2): 32-38. [Crossref] [PubMed]

11. Abdelaziz, M., Ibrahem, M.D., Ibrahim, M.A., Abu-Elala, N.M. and Abdel-Moneam, D.A. (2017) Monitoring of different Vibrio species affecting marine fishes in Lake Qaroun and Gulf of Suez: Phenotypic and molecular characterization. Egypt. J. Aquat. Res., 43(2): 141-146. [Crossref]

12. Kalatzis, P.G., Castillo, D., Katharios, P. and Middelboe, M. (2018) Bacteriophage Interactions with marine pathogenic Vibrio: Implications for phage therapy. Antibiotics, 7(1), e15. [Crossref]

13. Nasreldin, E. (2018) Clonal relationship among the Vibrio parahaemolyticus isolates from coastal water in Saudi Arabia. Egypt. J. Aquat. Res., 44(2): 131-137. [Crossref]

14. Shargel, L. and Yu, A.B.C. (2015) Introduction to biopharmaceutics and pharmacokinetics. In: Applied Biopharmaceutics and Pharmacokinetics. 7th ed. McGraw-Hill Education, New York.

15. Buxton, I.L.O. and Benet, L.Z. (2011) Pharmacokinetics: The dynamics of drug absorption, distribution, metabolism, and elimination. In: Brunton, L.L., Chabner, B.A. and Knollmann, B.C., editors. Goodman and Gilman's Pharmacological Basis of Therapeutics. 12th ed. The McGraw-Hill Companies, New York.

16. Rigos, G., Katharios, P. and Papandroulakis, N. (2010) Single intramuscular administration of long-acting oxytetracycline in grouper (Epinephelus marginatus). Turk. J. Vet. Anim. Sci., 34(5): 441-445.

17. NACLAR. (2004) National Advisory Committee for Laboratory Animals Research. 20 Biopolis Way #08-01 Centros Singapore 138668. Available from: http://www.research.ntu.edu.sg/guides/Documents/Ethics/NACLAR-guide%20Lines.pdf. Last accessed at 10/10/2018.

18. CCAC. (2005), Guidelines On: The Care and Use of Fish in Research, Teaching and Testing. Canadian Council on Animal Care, Guidelines Program. Ottawa, Canada. p1510-130.

19. Stoskopf, K.M. (2010) Fish Medicine. 2nd ed. ART Sciences LLC, 3512 Olive Chapel Road Extension Apex, North Carolina. p125-151.

20. Aboyadak, I.M., Ali, N.G.M., Goda, A.M.A., Saad, W. and Salam, A.M.E. (2017) Non-Selectivity of R S Media for Aeromonas hydrophila and TCBS Media for Vibrio Species isolated from diseased Oreochromis niloticus. J. Aquac. Res. Dev., 8(496): 1-5. [Crossref]

21. Black, J.G. and Black, L.J. (2015) Microbiology: Principles and Explorations. 9th ed. John Wiley and Sons, Inc., Hoboken.

22. Suvarna, S.K., Layton, C. and Bancroft, J.D. (2018) Bancroft's Theory and Practice of Histological Techniques. 8th ed. United Kingdom: Elsevier Limited.

23. CLSI. (2015) Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. CLSI document M100-S25. Clinical and Laboratory Standards Institute, Wayne, PA.

24. Hack, D.M., Dressel, D.C. and Peterson, L. (1999) Highly reproducible bactericidal activity test results by using a modified national committee for clinical laboratory standards broth macrodilution technique. J. Clin. Microbiol., 37(6): 1881-1884.

25. Lei, Z., Liu, Q., Yang, B., Ahmed, S., Xiong, J., Song, T., Chen, P., Cao, J. and He, Q. (2017) Evaluation of bioequivalence of two long-acting 20% oxytetracycline formulations in pigs. Front. Vet. Sci., 4(61): 1-6. [Crossref]

26. Toranzo, A.E., Magarinos, T.B. and Romalde, J.L. (2005) A review of the main bacterial fish diseases in mariculture systems. Aquaculture, 246(1-4): 37-61. [Crossref]

27. Huang, S.L., Chen, W.C., Shei, M.C., Liao, I.C. and Chen, A.N. (1999) Studies on epizootiology and pathogenicity of Staphylococcus epidermidis in tilapia (Oreochromis Spp.) cultured in Taiwan. Zool. Stud., 38(2): 178-188.

28. Yiagnisis, M. and Athanassopoulou, F. In: Aral, F., editor. (2011) Bacteria Isolated from Diseased Wild and Farmed Marine Fish in Greece, Recent Advances in Fish Farms. InTech Europe, University Campus STePRi, SlavkaKrautzeka 83/A, 51000 Rijeka, Croatia.

29. Buller, N.B. (2014) Bacteria and Fungi from Fish and Other Aquatic Animals. 2nd ed. CABI, Nosworthy Way, Wallingford, Oxfordshire.

30. Baya, A., Li, T., Lupiani, B. and Hetrick, F.M. (1992) Bacillus cereus, a Pathogen for Striped Bass. In: Eastern Fish Health and American Fisheries Society Fish Health Section Workshop, 16-19 June 1992. Auburn University, Auburn, Alabama. p67.

31. Chandra, G., Bhattacharjee, I. and Chatterjee, S. (2015) Bacillus cereus infection in stinging catfish, Heteropneustes fossilis (Siluriformes: Heteropneustidae) and their recovery by Argemone mexicana seed extract. Iran. J. Fish. Sci., 14(3): 741-753.

32. Kubilay, A. and Ulukoy, G. (2004) First isolation of Staphylococcus epidermidis from cultured gilthead sea bream (Sparus aurata) in Turkey. Bull. Eur. Ass. Fish. Pathol., 24(3): 137-143.

33. Kusuda, R. and Sugiyama, A. (1981) Studies on characters of Staphylococcus epidermidis isolated from diseased fishes, on the morphological, biological, and biochemical properties. Fish Pathol., 16(1): 15-24.

34. Austin, B. (1999) Emerging bacterial fish pathogen. Bull. Eur. Ass. Fish. Pathol., 19(6): 231-234.

35. Namvar, A.E., Bastarahang, S., Abbasi, N., Ghehi, G.S., Farhadbakhtiarian, S., Arezi, P., Hosseini, M., Baravati, S.Z., Jokar, Z. and Chermahin, S.G. (2014) Clinical characteristics of Staphylococcus epidermidis: A systematic review. GMS Hyg. Infect. Control., 9(3): Doc23. [PubMed] [PMC]

36. Pinheiro, L., Brito, C.I., Oliverra, A.D., Martins, P.Y.F., Pereira, V.C. and Cunha, M.D. (2015) Staphylococcus epidermidis and Staphylococcus haemolyticus: Molecular detection of cytotoxic and enterotoxin genes. Toxins, 7(9): 3688-3699. [Crossref] [PubMed] [PMC]

37. Granum, P.E. and Lund, T. (1997) Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett., 157(2): 223-228. [Crossref] [PubMed]

38. Prasad, M.P. (2014) Molecular characterization of enterotoxigenic Bacillus cereus species isolated from tropical marine fishes using RAPD markers. Int. J. Pure. Appl. Biosci., 2(4): 189-195.

39. Visiello, R., Colombo, S. and Carretto, E. (2016) Bacillus cereus hemolysins and other virulence factors. In: Savini, V., editor. The Diverse Faces of Bacillus cereus. Academic Press is an Imprint of Elsevier, London Wall, London. p35-44. [Crossref]

40. Steen, M.K., Bruno-Murtha, L.A., Chaux, G., Lazar, H., Bernard, S. and Sulis, C. (1992) Bacillus cereus endocarditis: Report of a case and review. Clin. Infect. Dis., 14(4): 945-946. [Crossref]

41. Callegan, M.C., Booth, M.C., Jett, B.D. and Gilmore, M.S. (1999) Pathogenesis of gram-positive bacterial endophthalmitis. Infect. Immun., 67(7): 3348-3356. [PubMed] [PMC]

42. Darbar A., Harris I.A., Gosbell. I.B. (2005) Necrotizing infection due to Bacillus cereus mimicking gas gangrene following penetrating trauma. J. Orthop. Trauma., 19(5): 353-355. [PubMed]

43. Auger, S., Ramarao, N., Faille, C., Fouet, A., Aymerich, S. and Gohar, M. (2009) Biofilm formation and cell surface properties among pathogenic and nonpathogenic strains of the Bacillus cereus group. Appl. Environ. Microbiol., 75(20): 6616-6618. [Crossref] [PubMed] [PMC]

44. Lebessi, E., Dellagrammaticas, H.D., Antonaki, G., Foustoukou, M. and Iacovidou, N. (2009) Bacillus cereus meningitis in a term neonate. J Matern. Fetal Neonatal. Med., 22(5): 458-461. [Crossref] [PubMed]

45. Bottone, E.J. (2010) Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev., 23(2): 382-398. [Crossref] [PubMed] [PMC]

46. Sergelidis, D., Abrahim, A., Papadopoulos, T., Soultos, N., Martziou, E., Koulourida, A., Govaris, A., Pexara, A., Zdragas, A. and Papa, A. (2014) Isolation of methicillin-resistant Staphylococcus spp. From ready-to-eat fish products. Lett. Appl. Microbiol., 59(5): 500-506. [Crossref] [PubMed]

47. Weber, D.J., Saviteer, S.M. Rutala, W.A. and Tomann, C.A. (1988) In vitro susceptibility of Bacillus spp. To selected antimicrobial agents. Antimicrob. Agents Chemother., 32(5): 642-645. [Crossref]

48. Miller, R.A. (2007) Development of Standardized Antimicrobial Susceptibility Testing Methods and Aeromonas salmonicida Epidemiologic Cutoff Values for Antimicrobial Agents Used in Aquaculture. Ph. D. Thesis, University of Maryland, College Park, USA. p3.

49. Bowden, B.C. (2001) Pharmacokinetic Profiles of Oxytetracycline in Yellow Perch (Perca flavescens) as Determined by Plasma Concentration Following Different Routes of Administration. M. V. Sc. Thesis, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, USA.