Open Access
Research (Published online: 27-06-2019)
26. Genetic variation and phylogenetic analysis of Indonesian indigenous catfish based on mitochondrial cytochrome oxidase subunit III gene
Rini Widayanti, Aris Haryanto, Wayan Tunas Artama and Suhendra Pakpahan
Veterinary World, 12(6): 896-900

Rini Widayanti: Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia.
Aris Haryanto: Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia.
Wayan Tunas Artama: Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia.
Suhendra Pakpahan: Biology Study Program, Faculty of Biotechnology, Duta Wacana Christian University, Yogyakarta, Indonesia.

doi: 10.14202/vetworld.2019.896-900

Share this article on [Facebook] [LinkedIn]

Article history: Received: 22-01-2019, Accepted: 09-05-2019, Published online: 27-06-2019

Corresponding author: Rini Widayanti

E-mail: rini_widayanti@ugm.ac.id

Citation: Widayanti R, Haryanto A, Artama WT, Pakpahan S (2019) Genetic variation and phylogenetic analysis of Indonesian indigenous catfish based on mitochondrial cytochrome oxidase subunit III gene, Veterinary World, 12(6): 896-900.
Abstract

Aim: This study aimed to analyze the genetic variation and phylogenetic reconstruction of Indonesian indigenous catfish using mitochondrial cytochrome oxidase subunit III sequences.

Materials and Methods: A total of 19 samples of catfish were collected from seven rivers (Elo [EM], Progo [PM], Kampar [KR], Musi [MP], Mahakam [MS], Kapuas [KS], and Bengawan Solo [BSBJ]) in five different geographical locations in Indonesia. The genome was isolated from the tissue. Mitochondrial DNA cytochrome oxidase subunit III was amplified using polymerase chain reaction (PCR) with CO3F and CO3R primers. The PCR products were sequenced and continued to analyze genetic variation and phylogenetic relationship using MEGA version 7.0 software.

Results: Cytochrome c oxidase (COX)-III gene sequencing obtained 784 nucleotides encoding 261 amino acids. Sequenced COX-III gene fragments were aligned along with other catfish from Genbank using ClustalW program and genetic diversity among species was analyzed using the MEGA Version 7.0 software. Among all samples, there were substitution mutations at 78 nucleotide sites, and there were 14 variations in amino acids. Catfish from PM, KR, MP, and KS had the same amino acids as Hemibagrus nemurus (KJ573466.1), while EM catfish had eight different amino acids and catfish BSBJhad 12 different amino acids.

Conclusion: Indonesian catfish divided into four clades. BBSJ Catfish were grouped with Pangasianodon gigas, EM catfish were grouped with Mystus rhegma, and KS catfish were grouped with Hemibagrus spilopterus, while catfish MS, KR, PM, and MP were grouped with H. nemurus.

Keywords: cytochrome c oxidase-III, Hemibagrus, Indonesian indigenous catfish, mitochondrial DNA, phylogenetic.

References

1. Peter, K.L.N. and Ng, H.H. (1995) Hemibagrus gracilis, a new species of large riverine catfish (Teleostei: Bagridae) from Peninsular Malaysia. Raffles Bull. Zool., 43(1): 133-142.

2. Kottelat, M., Whiten, A.J., Kartikasari, S.N. and Wirjoatmodjo, S. (1993) Freshwater Fishes of Western Indonesia and Sulawesi. Periplus Editions (HK) Ltd. Collaboration with the Environmental Management Development in Indonesia (EMDI) Project Ministry of State for Population and Environment, Republic of Indonesia, Indonesia.

3. Robert, T.R. (1989) The Freshwater Fishes of Western Borneo (Kalimantan Barat, Indonesia). Academy of Science, California. p210.

4. Mesomya, W., Cuptapun, Y., Jittanoonta, P., Hengsawadi, D., Boonsivut, S., Huttayanon, P. and Sriwatana, W. (2002) Nutritional evaluations of green catfish, Mystus nemurus. Kasetsart J. Nat. Sci., 36(1): 69-74.

5. El-Hag, G.A., Kamarudin, M.S., Saad, C.H. and Daud, S.K. (2012) Gut histology of Malaysia river catfish, Mystus nemurus (C and V) larvae. Life Sci. J., 9(2): 342-347.

6. Kumar, S. (1996) Patterns of nucleotide substitution in mitochondrial protein-coding genes of vertebrates. Genetics, 143(1): 537-548.

7. Balsa, E., Marco, R., Perales-Clemente, E., Szklarczyk, R., Calvo, E., Landazuri, M.O. and Enriquez, J.A. (2012) NDUFA4 is a subunit of complex IV of the mammalian electron transport chain. Cell Metab., 16(3): 378-386. [Crossref] [PubMed]

8. Brunori, M., Antonini, G., Malatesta, F., Sarti, P. and Wilson, M.T. (1987) Cytochrome-c oxidase: Subunit structure and proton pumping. Eur. J. Biochem., 169(1): 1-8. [Crossref] [PubMed]

9. Marotta, R., Chin, J., Kirby, D.M., Chiotis, M., Cook, M. and Collins, S.J. (2011) Novel single base pair COX III subunit deletion of mitochondrial DNA associated with rhabdomyolysis. J. Clin. Neurosci., 18(2): 290-292. [Crossref] [PubMed]

10. Liu, X., Zhang, P., Zhang, G., Li, S., Zhang, L., Xu, Z., Ma, T. and Li, D. (2017) A comparison of genetic diversity of COX-III gene in lowland chickens and Tibetan chickens. BioMed Res. Int., 2017(1): 1-13. [Crossref] [PubMed] [PMC]

11. Kantachumpoo, A., Uwai, S., Noiraksar, T. and Komatsu, T. (2014) Levels and distribution patterns of mitochondrial cox3 gene variation in brown seaweed, Sargassum polycystum C. Agardh (Fucales, Phaeophyceae) from Southeast Asia. J. Appl. Phycol., 26(2): 1301-1308. [Crossref]

12. Tian, Z., Liu, G., Yin, H., Luo, J., Guan, G., Xie, J., Luo, J., Zheng, J., Tian, M., Yuan, X., Wang, F., Chen, R. and Wang, F. (2013) Cytochrome c oxidase subunit III (COX3) gene, an informative marker for phylogenetic analysis and differentiation of Babesia species in China. Infect. Genet. Evol., 18: 13-17. [Crossref] [PubMed]

13. Kumar, S., Stecher, G. and Tamura, K. (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol., 33(7): 1870-1874. [Crossref] [PubMed]

14. Buj, I., Sanda, R., Marcic, Z., Caleta, M. and Mrakovcic, M. (2014) Combining morphology and genetics in resolving taxonomy a systematic revision of spined loaches (genus Cobitis; Cypriniformes, Actinopterygii) in the Adriatic watershed. PLoS One, 9(6): e99833. [Crossref] [PubMed] [PMC]

15. Ikabanga, D.U., Stevart, T., Koffi, K.G., Monthe, F.K., Doubindou, E.C.N., Dauby, G. and Hardy, O.J. (2017) Combining morphology and population genetic analysis uncover species delimitation in the widespread African tree genus Santiria (Burseraceae). Phytotaxa, 321(2): 166-180. [Crossref]

16. Ferraris, C.J. (2007) Checklist of catfishes, recent and fossil (Osteichthyes: Siluriformes), and catalog of Siluriformes primary types. Zootaxa, 1418(1): 1-628. [Crossref]

17. Rainboth, W.J. (1996) Fishes of the Cambodian Mekong: FAP Species Identification Field Guide for Fishery Purposes, FAO, Rome.

18. Ng, H.H. and Kottelat, M. (2013) Revision of the Asian catfish genus Hemibagrus Bleeker, 1862 (Teleostei: Siluriformes: Bagridae). Raffles Bull. Zool., 61(1): 205-291.

19. Hee, H.H. and Rachmatika, I. (1999) The catfishes (Teleostei: Siluriformes) of Bentuang Karimun national park, West Kalimantan, Indonesia. Raffles Bull. Zool., 47(1): 167-183.

20. Dodson, J.J., Colombani, F. and Ng, P.K.L. (1995) Phylogeographic structure in mitochondrial DNA of a South-east Asian freshwater fish, Hemibagrus nemurus (Siluroidei; Bagridae) and Pleistocene sea-level changes on the Sunda shelf. Mol. Ecol., 4(3): 331-346. [Crossref]

21. Dodson, J.J. (1999) Morphological and genetic description of a new species of catfish, Hemibagrus chrysops, from Sarawak, East Malaysia, with an assessment of phylogenetic relationships (Teleostei: Bagridae). Raffles Bull. Zool., 47(1): 45-58.

22. Dodson, J.J. and Lecomte, F. (2015) A DNA barcode-based evaluation of the Southeast Asian catfish genus Hemibagrus Bleeker, 1862 (Teleostei: Siluriformes Bagridae). Adv. Evol. Biol., 2015: 21. [Crossref]