Open Access
Research (Published online: 24-05-2019)
12. Comparison of conventional polymerase chain reaction and routine blood smear for the detection of Babesia canis, Hepatozoon canis, Ehrlichia canis, and Anaplasma platys in Buriram Province, Thailand
Rucksak Rucksaken, Cherdsak Maneeruttanarungroj, Thanaporn Maswanna, Metita Sussadee and Pithai Kanbutra
Veterinary World, 12(5): 700-705

Rucksak Rucksaken: Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand.
Cherdsak Maneeruttanarungroj: Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand; Bioenergy Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.
Thanaporn Maswanna: Scientific Instrument Center, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.
Metita Sussadee: Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand.
Pithai Kanbutra: Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand.

doi: 10.14202/vetworld.2019.700-705

Share this article on [Facebook] [LinkedIn]

Article history: Received: 11-12-2018, Accepted: 02-04-2019, Published online: 24-05-2019

Corresponding author: Rucksak Rucksaken

E-mail: cvtrsr@ku.ac.th

Citation: Rucksaken R, Maneeruttanarungroj C, Maswanna T, Sussadee M, Kanbutra P (2019) Comparison of conventional polymerase chain reaction and routine blood smear for the detection of Babesia canis, Hepatozoon canis, Ehrlichia canis, and Anaplasma platys in Buriram Province, Thailand, Veterinary World, 12(5): 700-705.
Abstract

Background and Aim: Dog blood parasites are important tick-borne diseases causing morbidity and mortality in dogs worldwide. Four dog blood parasites species are commonly found in Thailand: Babesia canis, Hepatozoon canis, Ehrlichia canis, and Anaplasma platys. They are transmitted easily by tick species. However, there is little prevalence data available in Thailand. Diseases presentation of blood parasites infection is similar, but the treatment of each species is different. Current diagnosis mainly relies on microscopic examination of a stained blood smear, which has low sensitivity. Therefore, accurate diagnosis is important. This study aims to evaluate the efficacy of the conventional polymerase chain reaction (PCR) method and routine blood smears in the detection of four blood parasites species in dogs from Buriram Province, Thailand.

Materials and Methods: In total, 49 EDTA-blood samples were collected from dogs in Buriram Province, Thailand. Blood parasite infection was compared using the Giemsa-stained blood smear technique to identify the parasite under a 100× oil immersion with PCR amplification of the 18S rDNA gene of B. canis and H. canis and the 16S rDNA gene of E. canis and A. platys.

Results: Only one dog out of 49 was positive for H. canis based on microscopic examination whereas the PCR results showed that 2.04% (1/49), 4.08% (2/49), 36.73% (18/49), and 30.61% (15/49) of dogs were positive for B. canis, H. canis, E. canis, and A. platys, respectively. Moreover, coinfection was found in 16.33% (8/49) of dogs.

Conclusion: This study is the first report to demonstrate the molecular prevalence of blood parasites in domestic dogs in Buriram Province. The results indicated that the PCR method exhibited much higher sensitivity and reliability for blood parasites diagnosis in dogs. Therefore, our data support serious concern regarding the diagnostic technique used in routine blood testing and also provide prevalence data for the management and control of blood parasites in this area.

Keywords: Blood parasites, dog, polymerase chain reaction, prevalence.

References

1. Procajlo, A., Skupien, E.M., Bladowski, M. and Lew, S. (2011) Monocytic ehrlichiosis in dogs. Pol. J. Vet. Sci., 14(3): 515-520. [Crossref]

2. Schoeman, J.P. (2009) Canine babesiosis. Onderstepoort J. Vet. Res., 76(1): 59-66. [Crossref] [PubMed]

3. Piratae, S., Pimpjong, K., Vaisusuk, K. and Chatan, W. (2015) Molecular detection of Ehrlichia canis, Hepatozoon canis and Babesia canis vogeli in stray dogs in Mahasarakham province, Thailand. Ann. Parasitol., 61(3): 183-187.

4. Matijatko, V., Kis, I., Torti, M., Brkljacic, M., Kucer, N., Rafaj, R.B., Grden, D., Zivicnjak, T. and Mrljak, V. (2009) Septic shock in canine babesiosis. Vet. Parasitol., 162(3): 263-270. [Crossref] [PubMed]

5. Azhahianambi, P., Jyothimol, G., Baranidharan, G., Aravind, M., Narendran, R.R., Latha, B.R. and Raman, M. (2018) Evaluation of multiplex PCR assay for detection of Babesia spp., Ehrlichia canis and Trypanosoma evansi in dogs. Acta Trop., 188: 58-67. [Crossref] [PubMed]

6. Ahmad, A.S., Saeed, M.A., Rashid, I., Ashraf, K., Shehzad, W., Traub, R.J., Baneth, G. and Jabbar, A. (2018) Molecular characterization of Hepatozoon canis from farm dogs in Pakistan. Parasitol. Res., 117(4): 1131-1138. [Crossref] [PubMed]

7. Andersson, M.O., Tolf, C., Tamba, P., Stefanache, M., Waldenstrom, J., Dobler, G. and Chitimia-Dobler, L. (2017) Canine tick-borne diseases in pet dogs from Romania. Parasit. Vectors, 10(1): 155. [Crossref] [PubMed] [PMC]

8. Liu, M., Ruttayaporn, N., Saechan, V., Jirapattharasate, C., Vudriko, P., Moumouni, P.F., Cao, S., Inpankaew, T., Ybanez, A.P., Suzuki, H. and Xuan, X. (2016) Molecular survey of canine vector-borne diseases in stray dogs in Thailand. Parasitol. Int., 65(4): 357-361. [Crossref] [PubMed]

9. Laummaunwai, P., Sriraj, P., Aukkanimart, R., Boonmars, T., Boonjaraspinyo, S., Sangmaneedet, S., Potchimplee, P., Khianman, P. and Maleewong, W. (2014) Molecular detection and treatment of tick-borne pathogens in domestic dogs in Khon Kaen, Northeastern Thailand. Southeast Asian J. Trop. Med. Public Health, 45(5): 1157-1166.

10. Kaewkong, W., Intapan, P.M., Sanpool, O., Janwan, P., Thanchomnang, T., Kongklieng, A., Tantrawatpan, C., Boonmars, T., Lulitanond, V., Taweethavonsawat, P., Chungpivat, S. and Maleewong, W. (2014) High throughput pyrosequencing technology for molecular differential detection of Babesia vogeli, Hepatozoon canis, Ehrlichia canis and Anaplasma platys in canine blood samples. Ticks Tick Borne Dis., 5(4): 381-385. [Crossref] [PubMed]

11. Jittapalapong, S., Rungphisutthipongse, O., Maruyama, S., Schaefer, J.J. and Stich, R.W. (2006) Detection of Hepatozoon canis in stray dogs and cats in Bangkok, Thailand. Ann. N. Y. Acad. Sci., 1081(1): 479-488. [Crossref] [PubMed]

12. Nithikathkul, C., Polseela, R., Iamsa-Ard, J., Wongsawad, C. and Jittapalapong, S. (2005) A study of ectoparasites of Canis lupus familiaris in Mueang district, Khon Kaen, Thailand. Southeast Asian J. Trop. Med. Public Health, 36(4): 149-151.

13. Vascellari, M., Ravagnan, S., Carminato, A., Cazzin, S., Carli, E., Da Rold, G., Lucchese, L., Natale, A., Otranto, D. and Capelli, G. (2016) Exposure to vector-borne pathogens in candidate blood donor and free-roaming dogs of northeast Italy. Parasit. Vectors, 9(1): 369. [Crossref] [PubMed] [PMC]

14. Stegeman, J.R., Birkenheuer, A.J., Kruger, J.M. and Breitschwerdt, E.B. (2003) Transfusion-associated Babesia gibsoni infection in a dog. J. Am. Vet. Med. Assoc., 222(7): 959-963, 952. [Crossref]

15. Holman, P.J. and Snowden, K.F. (2009) Canine hepatozoonosis and babesiosis, and feline cytauxzoonosis. Vet. Clin. North Am. Small Anim. Pract., 39(6): 1035-1053. [Crossref] [PubMed]

16. Harrus, S. and Waner, T. (2011) Diagnosis of canine monocytotropic ehrlichiosis (Ehrlichia canis): An overview. Vet. J., 187(3): 292-296. [Crossref] [PubMed]

17. Bouzouraa, T., Rene-Martellet, M., Chene, J., Attipa, C., Lebert, I., Chalvet-Monfray, K., Cadore, J.L., Halos, L. and Chabanne, L. (2016) Clinical and laboratory features of canine Anaplasma platys infection in 32 naturally infected dogs in the Mediterranean basin. Ticks Tick Borne Dis., 7(6): 1256-1264. [Crossref] [PubMed]

18. Welzl, C., Leisewitz, A.L., Jacobson, L.S., Vaughan-Scott, T. and Myburgh, E. (2001) Systemic inflammatory response syndrome and multiple-organ damage/dysfunction in complicated canine babesiosis. J. S. Afr. Vet. Assoc., 72(3): 158-162. [Crossref]

19. Irwin, P.J. (2010) Canine babesiosis. Vet. Clin. North Am. Small Anim. Pract., 40(6): 1141-1156. [Crossref] [PubMed]

20. Kordick, S.K., Breitschwerdt, E.B., Hegarty, B.C., Southwick, K.L., Colitz, C.M., Hancock, S.I., Bradley, J.M., Rumbough, R., McPherson, J.T. and MacCormack, J.N. (1999) Coinfection with multiple tick-borne pathogens in a Walker Hound kennel in North Carolina. J. Clin. Microbiol., 37(8): 2631-2638.

21. Gaunt, S., Beall, M., Stillman, B., Lorentzen, L., Diniz, P., Chandrashekar, R. and Breitschwerdt, E. (2010) Experimental infection and co-infection of dogs with Anaplasma platys and Ehrlichia canis: Hematologic, serologic and molecular findings. Parasit. Vectors, 3(1): 33. [Crossref] [PubMed] [PMC]

22. Woody, B.J. and Hoskins, J.D. (1991) Ehrlichial diseases of dogs. Vet. Clin. North Am. Small Anim. Pract., 21(1): 75-98. [Crossref]

23. O'Dwyer, L.H., Massard, C.L. and Pereira de Souza, J.C. (2001) Hepatozoon canis infection associated with dog ticks of rural areas of Rio de Janeiro state, Brazil. Vet. Parasitol., 94(3): 143-150. [Crossref]

24. Yamane, I., Thomford, J.W., Gardner, I.A., Dubey, J.P., Levy, M. and Conrad, P.A. (1993) Evaluation of the indirect fluorescent antibody test for diagnosis of Babesia gibsoni infections in dogs. Am. J. Vet. Res., 54(10): 1579-1584.

25. Waner, T., Strenger, C., Keysary, A. and Harrus, S. (1998) Kinetics of serologic cross-reactions between Ehrlichia canis and the Ehrlichia phagocytophila genogroups in experimental E. canis infection in dogs. Vet. Immunol. Immunopathol., 66(3-4): 237-243. [Crossref]

26. Ano, H., Makimura, S. and Harasawa, R. (2001) Detection of Babesia species from infected dog blood by a polymerase chain reaction. J. Vet. Med. Sci., 63(1): 111-113. [Crossref]

27. Azmi, K., Al-Jawabreh, A., Nasereddin, A., Abdelkader, A., Zaid, T., Ereqat, S., Sawalha, S.S., Baneth, G. and Abdeen, Z. (2017) Detection and molecular identification of Hepatozoon canis and Babesia vogeli from domestic dogs in Palestine. Parasitology, 144(5): 613-621. [Crossref] [PubMed]

28. Aktas, M., Ozubek, S., Altay, K., Ipek, N.D., Balkaya, I., Utuk, A.E., Kirbas, A., Simsek, S. and Dumanli, N. (2015) Molecular detection of tick-borne rickettsial and protozoan pathogens in domestic dogs from Turkey. Parasit. Vectors, 8: 157. [Crossref] [PubMed] [PMC]

29. Fukumoto, S., Xuan, X., Shigeno, S., Kimbita, E., Igarashi, I., Nagasawa, H., Fujisaki, K. and Mikami, T. (2001) Development of a polymerase chain reaction method for diagnosing Babesia gibsoni infection in dogs. J. Vet. Med. Sci., 63(9): 977-981. [Crossref]

30. Wardrop, K.J., Birkenheuer, A., Blais, M.C., Callan, M.B., Kohn, B., Lappin, M.R. and Sykes, J. (2016) Update on canine and feline blood donor screening for blood-borne pathogens. J. Vet. Intern. Med., 30(1): 15-35. [Crossref] [PubMed] [PMC]

31. Rosenblatt, J.E. (2009) Laboratory diagnosis of infections due to blood and tissue parasites. Clin. Infect. Dis., 49(7): 1103-1108. [Crossref] [PubMed]