Veterinary World


ISSN (Online): 2231-0916


 Editorial board

 Instructions for authors

 Reviewer guideline

 Open access policy




Open Access

Copyright: The authors. This article is an open access article licensed under the terms of the Creative Commons Attribution License ( which permits unrestricted use, distribution and reproduction in any medium, provided the work is properly cited.

Research (Published online: 06-02-2014)

2. Comparative study of linear mixed-effects and artificial neural network models for longitudinal unbalanced growth data of Madras Red sheep - R. Ganesan, P. Dhanavanthan, C. Kiruthika, P. Kumarasamy and D. Balasubramanyam
Veterinary World, 7(2): 52-58


doi: 10.14202/vetworld.2014.52-58



1. Moore, A.J. (1985) A mathematical equation for animal growth from embryo to adult. Anim. Prod. 47: 201-207.
2. Topal, M., Ozdemir, M., Aksakal, V., Yildiz, N. and Dogru, U. (2004) Determination of the best nonlinear function in order to estimate growth in Morkaraman and Awassi lambs. Small Rumin. Res. 55: 229-232.
3. Balasubramanyam, D. and Kumarasamy, P. (2011) Performance of Madras red sheep in Kancheepuram District. Indian J. Fundamental and Applied Life Sci. 1(2): 133-137.
4. Balasubramanyam, D., Jaishankar, S. and Sivaselvam, S.N. (2010) Performance of Madras red sheep under farmer's flocks. Indian J. Small Rumin. 16(2): 217-220.
5. Sivakumar, T., Balasubramanyam, D., Thilak Pon Jawahar, K., Gopi, H. and Jaishankar, S. (2009) Growth and reproductive performance of Madras red sheep under field conditions. Indian J. Small Rumin. 15(2): 248-252.
6. Michikazu Nakai and Weiming Ke (2009) Statistical Models for Longitudinal Data Analysis. Applied Mathematical Sciences. 1(3):1979-1989.
7. Robert D Gibbons, Donald Hedeker and Stephen DuToit (2010) Advances in Analysis of Longitudinal Data. Annu Rev Clin Psychol. 6: 79–107.
8. Laird, N.M and Ware, J.H. (1982) Random-effects models for longitudinal data. Biometrics 38: 963-74.
9. Seber, G. A. F. and Wild, C. J. (2003) Nonlinear Regression. John Wiley and Sons, Hoboken, New Jersey.
10. Fausett, L. (1994) Fundamentals of Neural Networks. Prentice-Hall, USA.
11. Haykin, S. (1999) Neural Networks: A Comprehensive Foundation. 2nd Edition, Prentice-Hall, Upper Saddle River, NJ.
12. Tandon, R., Adak, S. and Kaye, J.A. (2006), Neural networks for longitudinal studies in Alzheimer's disease. Artificial Intelligence in Medicine 36: 245-255.
13. Tanmay Kumar Maity and Asim Kumar Pal. (2013) Subject Specific Treatment to Neural Networks for Repeated Measures Analysis. Proceedings of the International Multi Conference of Engineers and Computer Scientists, IMECS 2013, March 13 - 15, 2013, Hong Kong. 1: 60-65.
14. Siwei Liu, Michael J. Rovine and Peter C.M. Molenaar. (2012) Selecting a linear mixed model for longitudinal data: Repeated measures analysis of variance, covariance pattern model and growth curve approaches. Psychological methods 17(1): 15-30.
15. Jenrich, R.I. and Schluchter, M.D. (1986) Unbalanced repeated-measures models with structured covariance matrices. Biometrics 42: 805–820.
16. Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6): 716-723.
17. Bryson, A. E., and Ho., Y. C. (1969) Applied Optimal Control: Optimization, Estimation and Control. Blaisdell Publishing Company, NY.
18. Theil, H. (1963) On the use of incomplete prior information in regression analysis. Journal of the American Statistical Association 58: 404-414.
19. SPSS Inc. Released (2009) PASW Statistics for Windows, Version 18.0. Chicago.
20. Diggle, P.J., Heagerty, P., Liang, K.Y. and Zeger, S.L. (2002) Analysis of Longitudinal Data, 2nd Edition, Oxford University Press, NY.